深入理解Python中的元类

这篇具有很好参考价值的文章主要介绍了深入理解Python中的元类。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


1、类也是对象


所有对象都是实例化或者调用类而得到的,Python中一切都是对象,通过class关键字定义的类本质也是对象,对象又是通过调用类得到的,因此通过class关键字定义的类肯定也是调用了一个类得到的,这个类就是元类。type就是Python内置的元类

在理解元类之前,你需要先掌握Python中的类。Python中类的概念借鉴于Smalltalk语言,这显得有些奇特。在大多数编程语言中,类就是一组用来描述如何生成一个对象的代码段。在Python中这一点仍然成立:

class ObjectCreator(object):
    pass

obj = ObjectCreator()
print(obj)               # <__main__.ObjectCreator object at 0x0000021098A4AFB0>

但是,Python中的类还远不止如此。类同样也是一种对象。是的,没错,就是对象。只要你使用关键字class,Python解释器在执行的时候就会创建一个对象

例如,上面class代码段,将在内存中创建对象ObjectCreator。这个对象(类)自身拥有创建对象(类实例)的能力,而这就是它为什么是类也是对象的原因

但是,它本质上仍然是一个对象,于是乎你可以对它做如下操作:

  • 1)你可以将它赋值给一个变量
  • 2)你可以拷贝它
  • 3)你可以为它增加属性
  • 4)你可以将它作为函数参数进行传递

下面是示例:

# 你可以打印一个类,因为它就是一个对象
print(ObjectCreator)    # <class '__main__.ObjectCreator'>
# 你可以将类作为参数传给函数
def echo(o):
    print(o)
echo(ObjectCreator)     # <class '__main__.ObjectCreator'>
# 你可以为类增加属性
ObjectCreator.field = 'value'
print(hasattr(ObjectCreator, 'field'))    # True
print(ObjectCreator.field)                # value
# 你可以将类复制给一个变量
var = ObjectCreator
print(var())    # <__main__.ObjectCreator object at 0x0000026AF00EABF0>

动态地创建类:

因为类也是对象,你可以在运行时动态的创建它们,就像其他任何对象一样。首先,你可以在函数中创建类,使用class关键字即可

def choose_class(name):
    match name:
        case 'stu':
            class Stu(object):
                pass
            return Stu
        case 'emp':
            class Emp(object):
                pass
            return Emp

stu = choose_class('stu')
# 返回类,而不是类的实例
print(stu)      # <class '__main__.choose_class.<locals>.Stu'>
# 可以通过这个类创建类的实例(类对象)
print(stu())    # <__main__.choose_class.<locals>.Stu object at 0x000001D7E6D9AAA0>

但这还不够动态,因为你仍然需要自己编写整个类的代码。由于类也是对象,所以它们应该也是通过什么东西来生成的才对。当你使用class关键字时,Python解释器自动创建这个对象。但就和Python中的大多数事情一样,Python仍然提供给你手动处理的方法

还记得内建函数type()吗?这个古老但强大的函数能够让你知道一个对象的类型是什么,就像这样:

print(type(0))                  # <class 'int'>
print(type('0'))                # <class 'str'>
print(type(ObjectCreator))      # <class 'type'>
print(type(ObjectCreator()))    # <class '__main__.ObjectCreator'>

这里,type有一种完全不同的能力,它也能动态的创建类。type可以接受一个类的描述作为参数,然后返回一个类

我知道,根据传入参数的不同,同一个函数拥有两种完全不同的用法是一件很愚蠢的事情,但这在Python中是为了保持向后兼容性

type可以像这样工作:

'''
type(name, bases, attrs)
name:类的名称  bases:父类,用于继承,元组类型,可为空  attrs:包含属性名称和属性值的字典
'''

比如下面的代码:

class MyShinyClass(object):
    pass

# 可以手动像这样创建:
MyShinyClass = type('MyShinyClass', (), {})
# 返回类对象
print(MyShinyClass)      # <class '__main__.MyShinyClass'>
# 创建该类的实例
print(MyShinyClass())    # <__main__.MyShinyClass object at 0x0000018E2F0FAAA0>

你会发现我们使用MyShinyClass作为类名,并且也可以把它当做一个变量来作为类的引用。类和变量是不同的,这里没有任何理由把事情弄的复杂

type接受一个字典来为类定义属性,因此:

class Foo(object):
    flag = True

可以翻译为:

Foo = type('Foo', (), {'flag': True})

并且可以将Foo当成一个普通的类一样使用:

print(Foo)         # <class '__main__.Foo'>
print(Foo.flag)    # True
foo = Foo()
print(foo)         # <__main__.Foo object at 0x00000203B4A4AA70>
print(foo.flag)    # True

当然,你可以向这个类继承:

class FooChild(Foo):
    pass

就可以写成:

FooChild = type('FooChild', (Foo,), {})

print(FooChild)         # <class '__main__.FooChild'>
# flag属性是由继承而来的
print(FooChild.flag)    # True

最终你会希望为你的类增加方法。只需要定义一个有着恰当签名的函数并将其作为属性赋值就可以了:

def echo_flag(self):
    print(self.flag)

FooChild = type('FooChild', (Foo,), {'echo_flag': echo_flag})
print(hasattr(Foo, 'echo_flag'))         # False
print(hasattr(FooChild, 'echo_flag'))    # True
child = FooChild()
child.echo_flag()                        # True

你可以看到,在Python中,类也是对象,你可以动态的创建类。这就是当你使用关键字class时Python在幕后做的事情,而这就是通过元类来实现的

2、什么是元类


元类就是用来创建类的东西。你创建类就是为了创建类的实例对象,不是吗?但是我们已经知道Python中的类也是对象。好吧,元类就是用来创建这些类(对象)的,元类就是类的类,你可以这样理解:

'''
MyClass = MetaClass()
MyObject = MyClass()
'''

你已经看到了type可以让你像这样做:

MyClass = type('MyClass', (), {})

这是因为函数type实际上是一个元类。type就是Python在背后用来创建所有类的元类。现在你想知道那为什么type会全部采用小写形式而不是Type呢?好吧,我猜这是为了和str保持一致性,str是用来创建字符串对象的类,而int是用来创建整数对象的类

type就是创建类对象的类。你可以通过检查__class__属性来看到这一点。Python中所有的东西,注意,我是指所有的东西——都是对象。这包括整数、字符串、函数以及类。它们全部都是对象,而且它们都是从一个类创建而来

age = 18
print(age.__class__)       # <class 'int'>
name = 'Tom'
print(name.__class__)      # <class 'str'>
def method(): pass
print(method.__class__)    # <class 'function'>
class Bar(object): pass
bar = Bar()
print(bar.__class__)       # <class '__main__.Bar'>

那么,对于任何一个__class____class__属性又是什么呢?

print(age.__class__.__class__)       # <class 'type'>
print(name.__class__.__class__)      # <class 'type'>
print(method.__class__.__class__)    # <class 'type'>
print(bar.__class__.__class__)       # <class 'type'>

因此,元类就是创建类这种对象的东西。如果你喜欢的话,可以把元类称为类工厂(不要和工厂类搞混了),type就是Python的内建元类,当然了,你也可以创建自己的元类

3、__metaclass__属性


你可以在写一个类的时候为其添加__metaclass__属性:

class Foo(object):
    __metaclass__ = something

如果你这么做了,Python就会用元类来创建类Foo。小心点,这里面有些技巧。你首先写下class Foo(object),但是类对象Foo还没有在内存中创建

Python会在类的定义中寻找__metaclass__属性,如果找到了,Python就会用它来创建类Foo,如果没有找到,就会用内建的type来创建这个类

class Foo(Bar):
    pass

当你写该代码时,Python做了如下的操作:

Foo中有__metaclass__这个属性吗?如果是,Python会在内存中通过__metaclass__创建一个名字为Foo的类对象。如果Python没有找到__metaclass__,它会继续在Bar(父类)中寻找__metaclass__属性,并尝试做和前面同样的操作。如果Python在任何父类中都找不到__metaclass__,它就会在模块层次中去寻找__metaclass__,并尝试做同样的操作,如果还是找不到__metaclass__,Python就会用内置的type来创建这个类对象

现在的问题就是,你可以在__metaclass__中放置些什么代码呢?答案就是:可以创建一个类的东西。那么什么可以用来创建一个类呢?type或任何使用到type或子类化type的东西都可以

Python3中的元类:

在Python3中,设置元类的语法已经更改:

class Foo(object, metaclass=something):
    pass

即不再使用metaclass属性,而是在基类列表中使用__metaclass__关键字参数。然而,元类的行为基本保持不变

4、自定义元类


元类的主要目的就是为了当创建类时能够自动地改变类。通常,你会为API做这样的事情,你希望可以创建符合当前上下文的类。假想一个很愚蠢的例子,你决定在你的模块里所有的类的属性都应该是大写形式

有好几种方法可以办到,但其中一种就是通过在模块级别设定__metaclass__。采用这种方法,这个模块中的所有类都会通过这个元类来创建,我们只需要告诉元类把所有的属性都改成大写形式就万事大吉了

幸运的是,__metaclass__实际上可以被任意调用,它并不需要是一个正式的类。所以,我们这里就先以一个简单的函数作为例子开始

# 元类会自动将你通常传给type的参数作为自己的参数传入
def upper_attr(future_class_name, future_class_parents, future_class_attrs):
    """返回一个类对象,将属性全部转为大写形式"""
    # 选择所有不以'__'开头的属性(私有属性),将它们转为大写形式
    uppercase_attrs = {
        attr if attr.startswith("__") else attr.upper(): v
        for attr, v in future_class_attrs.items()
    }
    # 通过type来做类对象的创建
    return type(future_class_name, future_class_parents, uppercase_attrs)

# 这会作用到这个模块中的所有类
__metaclass__ = upper_attr

# 需要注意的是,全局__metaclass__将不能与object一起工作
class Foo():
    # 我们也可以只在这里定义__metaclass__,这样就只会作用于这个类中
    # __metaclass__ = upper_attr
    bar = 'bip'

print(hasattr(Foo, 'bar'))    # True
print(hasattr(Foo, 'BAR'))    # False
foo = Foo()
print(foo.bar)                # bip

注意:此处存在问题,结果与预期相反,原因未知,有人知道什么原因吗?

现在,让我们做完全相同的事情,但对元类使用一个真正的类:

# 请记住,type实际上是一个类,就像str和int一样,所以,你可以从type继承
class UpperAttrMetaClass(type):
    # __new__是在__init__之前被调用的特殊方法,是用来创建对象并返回的方法
    # 而__init__只是用来将传入的参数初始化给对象,你很少用到__new__,除非你希望能够控制对象的创建
    # 这里,创建的对象是类,我们希望能够自定义它,所以我们这里改写__new__
    # 如果你希望的话,你也可以在__init__中做些事情,还有一些高级的用法会涉及到改写__call__特殊方法,但是我们这里不用
    def __new__(upperattr_metaclass, future_class_name, future_class_parents, future_class_attrs):
        uppercase_attrs = {
            attr if attr.startswith("__") else attr.upper(): v
            for attr, v in future_class_attrs.items()
        }
        return type(upperattr_metaclass, future_class_name, future_class_parents, uppercase_attrs)

但是,这种方式其实不是OOP。我们直接调用了type,而且我们没有改写父类的__new__方法。现在让我们这样去处理:

class UpperAttrMetaClass(type):
    def __new__(upperattr_metaclass, future_class_name, future_class_parents, future_class_attrs):
        uppercase_attrs = {
            attr if attr.startswith("__") else attr.upper(): v
            for attr, v in future_class_attrs.items()
        }
        return type.__new__(upperattr_metaclass, future_class_name, future_class_parents, uppercase_attrs)

你可能已经注意到了有个额外的参数upperattr_metaclass,这并没有什么特别的。类方法的第一个参数总是表示当前的实例,就像在普通的类方法中的self参数一样

当然了,为了清晰起见,这里的名字我起的比较长。但是就像self一样,所有的参数都有它们的传统名称。因此,在真实的产品代码中一个元类应该是像这样的:

class UpperAttrMetaclass(type):
    def __new__(cls, clsname, bases, attrs):
        uppercase_attrs = {
            attr if attr.startswith("__") else attr.upper(): v
            for attr, v in attrs.items()
        }
        return type.__new__(cls, clsname, bases, uppercase_attrs)

如果使用super方法的话,我们还可以使它变得更清晰一些,这会简化继承(你可以拥有元类,从元类继承,从type继承)

class UpperAttrMetaclass(type):
    def __new__(cls, clsname, bases, attrs):
        uppercase_attrs = {
            attr if attr.startswith("__") else attr.upper(): v
            for attr, v in attrs.items()
        }
        return super(UpperAttrMetaclass, cls).__new__(cls, clsname, bases, uppercase_attrs)

class Foo(object, metaclass=UpperAttrMetaclass):
    bar = 'bip'

print(hasattr(Foo, 'bar'))    # False
print(hasattr(Foo, 'BAR'))    # True
foo = Foo()
print(foo.BAR)                # bip

在Python3中,如果你使用关键字参数进行调用,如下所示:

class Foo(object, metaclass=MyMetaclass, kwargs=default):
    pass

它在元类中可转换为:

class MyMetaclass(type):
    def __new__(cls, clsname, bases, dct, kwargs=default):
        pass

就是这样,除此之外,关于元类真的没有别的可说的了。使用到元类的代码比较复杂,这背后的原因倒并不是因为元类本身,而是因为你通常会使用元类去做一些晦涩的事情,依赖于自省,控制继承等

确实,用元类来搞些“黑暗魔法”是特别有用的,因而会搞出些复杂的东西来。但就元类本身而言,它们其实是很简单的:

  • 1)拦截类的创建
  • 2)修改类
  • 3)返回修改之后的类

5、为什么要用metaclass类而不是函数


由于__metaclass__可以接受任何可调用的对象,那为何还要使用类呢,因为很显然使用类会更加复杂啊!这样做有以下几个原因:

  • 1)意图会更加清晰。当你读到UpperAttrMetaclass(type)时,你知道接下来要发生什么
  • 2)你可以使用OOP编程。元类可以从元类中继承而来,改写父类的方法。元类甚至还可以使用元类
  • 3)你可以把代码组织的更好。当你使用元类的时候肯定不会是像我上面举的这种简单场景,通常都是针对比较复杂的问题。将多个方法归总到一个类中会很有帮助,也会使得代码更容易阅读
  • 4)你可以使用__new____init__以及__call__这样的特殊方法。它们能帮你处理不同的任务。就算通常你可以把所有的东西都在__new__里处理掉,有些人还是觉得用__init__更舒服些
  • 5)哇哦,这东西的名字是metaclass,肯定非善类,我要小心!

6、究竟为什么要使用元类


现在回到我们的主题上来,究竟是为什么你会去使用这样一种容易出错且晦涩的特性?好吧,一般来说,你根本就用不上它

Python界的领袖Tim Peters说:

元类就是深度的魔法,99%的用户应该根本不必为此操心。如果你想搞清楚究竟是否需要用到元类,那么你就不需要它。那些实际用到元类的人都非常清楚地知道他们需要做什么,而且根本不需要解释为什么要用元类

元类的主要用途是创建API。一个典型的例子是Django ORM。它允许你像这样定义:

class Person(models.Model):
    name = models.CharField(max_length=30)
    age = models.IntegerField()

但是,如果你这样做:

person = Person(name='Tom', age='18')
print(person.age)

这并不会返回一个IntegerField对象,而是会返回一个int,甚至可以直接从数据库中取出数据。这是有可能的,因为models.Model定义了__metaclass__, 并且使用了一些魔法能够将你刚刚定义的简单的Person类转变成对数据库的一个复杂hook。Django框架将这些看起来很复杂的东西通过暴露出一个简单的使用元类的API将其化简,通过这个API重新创建代码,在背后完成真正的工作

7、结语


首先,你知道了类其实是能够创建出类实例的对象。好吧,事实上,类本身也是实例,当然,它们是元类的实例

Python中的一切都是对象,它们要么是类的实例,要么是元类的实例,除了type

type实际上是它自己的元类,在纯Python环境中这可不是你能够做到的,这是通过在实现层面做一些手段实现的

其次,元类是很复杂的。对于非常简单的类,你可能不希望通过使用元类来对类做修改。你可以通过其他两种技术来修改类:

  • monkey patching(猴子补丁)
  • class decorators(类装饰器)

当你需要动态修改类时,99%的时间里你最好使用上面这两种技术。当然了,其实在99%的时间里你根本就不需要动态修改类


参考文章:https://stackoverflow.com/questions/100003/what-are-metaclasses-in-python文章来源地址https://www.toymoban.com/news/detail-715429.html


到了这里,关于深入理解Python中的元类的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • python基础(5):深入理解 python 中的赋值、引用、拷贝、作用域

    目录 python基础(5):深入理解 python 中的赋值、引用、拷贝、作用域 1、先来看个问题吧: 2、引用 VS 拷贝: 3、增强赋值以及共享引用:

    2024年02月08日
    浏览(47)
  • Python中的元组(tuple)

    Python中的元组(tuple)是一种不可变的有序序列,与列表(list)类似。元组中的元素可以是任何类型的对象,并且可以包含重复的元素。元组一旦创建就无法修改。 以下是Python元组的一些常用操作: 1. 创建元组:可以使用小括号()或者tuple()函数来创建一个元组。 ```python my_tuple =

    2024年02月04日
    浏览(50)
  • 全局单身汉:深入理解 Python 中的单例对象

    项目 描述 搜索引擎 Google 、Bing Python 官方文档 项目 描述 Python 解释器 3.10.6 单例对象 在 Python 中,单例对象是一种设计模式,旨在确保在应用程序中只有一个特定类的实例。这意味着无论创建多少个该类的实例,都将始终引用相同的实例。 单例对象的优缺点 单例对象的优点

    2024年02月02日
    浏览(44)
  • 【iOS开发】理解OC的类,父类,元类的关系

    在OC中,有对象objc,有类Class,有父类SuperClass,其实还有一种元类MetaClass。在接下来的RunLoop,消息转发机制的学习之前需要知道OC类和对象的底层,所以理解类, 父类,元类的关系是基础 在 Objective-C 中,类是对象的模板或蓝图,而对象则是类的实例。每个对象都有一个类作

    2024年02月03日
    浏览(45)
  • 深入理解C语言中的枚举

    目录 1. 枚举的定义 2. 枚举常量的赋值 3. 枚举的使用示例 4. 注意事项 在C语言中,枚举(Enum)是一种用户定义的数据类型,用于定义一组具名的整型常量。枚举常常用于提高代码的可读性和可维护性,使程序更易于理解。本篇博客将详细介绍C语言中枚举的相关知识,并提供

    2024年03月24日
    浏览(37)
  • 深入理解 Go 语言中的 iota

    iota是go语言的常量计数器,只能在常量表达式中使用,iota在const出现时将被重置为0,const中每新增一行常量声明将使iota计数一次,可理解为const语句块中的行索引。它会自动递增,从0开始。 尽管默认步长为1,但我们也可以通过在常量声明中显式赋值来修改 iota 的步长

    2024年02月10日
    浏览(47)
  • 深入理解Python中的math和decimal模块:数学基础与高精度计算实战【第104篇—math和decimal模块】

    前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 在Python中, math 和 decimal 模块是处理数学运算的重要工具。 math 提供了一系列常见的数学函数,而 decimal 则专注于高精度的浮点数运算。本文

    2024年03月19日
    浏览(51)
  • 深入理解C语言中的联合体(union)

    在C语言中,联合体(union)是一种特殊的数据类型,它可以让你在相同的内存位置存储不同的数据类型。通过联合体,你可以在同一时间访问不同的变量,这在某些情况下非常有用。下面我们将深入探讨联合体的特性和用法,以及一些常见的使用场景。 联合体是一种特殊的数

    2024年02月20日
    浏览(45)
  • 深入理解C语言(1):数据在内存中的存储

    文章主题:数据在内存中的存储🌏 所属专栏: 深入理解C语言 📔 作者简介:更新有关深入理解C语言知识的博主一枚,记录分享自己对C语言的深入解读。😆 个人主页: [₽]的个人主页 🏄🌊 char(字符型) char unsigned char signed char short(短整型) short [int] unsigned short [int]

    2024年02月08日
    浏览(37)
  • 《深入理解C语言中的逻辑运算符及其短路特性》

    在C语言中,除了关系运算符之外,我们还可以使用逻辑运算符。逻辑运算符主要包括与运算()、或运算(||)和非运算(!)三种。这些运算符可以用来进行复杂的条件判断,简化程序的执行流程。在进行逻辑运算时,C语言规定非0即真,0即假。本篇博客主要围绕这个特性展

    2024年02月05日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包