大数据-Storm流式框架(二)--wordcount案例

这篇具有很好参考价值的文章主要介绍了大数据-Storm流式框架(二)--wordcount案例。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

大数据-Storm流式框架(二)--wordcount案例,Storm,大数据,storm

一、编写wordcount案例

1、新建java项目

2、添加storm的jar包

storm软件包中lib目录下的所有jar包

3、编写java类

WordCountTopology.java
package com.bjsxt.storm.wc;

import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.generated.StormTopology;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.tuple.Fields;
import backtype.storm.utils.Utils;

public class WordCountTopology {

    public static void main(String[] args) {
        // 拓扑封装了计算逻辑
        TopologyBuilder builder = new TopologyBuilder();
        // 设置lineSpout:该spout负责向拓扑发送句子
        builder.setSpout("lineSpout", new LineSpout());
        // 设置切分闪电,该闪电处理从水龙头lineSpout通过随机分组发送过来的元组
        builder.setBolt("splitBolt", new SplitBolt())
            .shuffleGrouping("lineSpout");
        // 定义一个计数闪电,该闪电从splitBolt闪电通过按字段分组的方式分发过来的元组
        // 按照元组中word的值进行分组。要保证相同的单词一定发送给同一个闪电。
        builder.setBolt("countBolt", new CountBolt())
                .fieldsGrouping("splitBolt", new Fields("word"));

        // 通过建造者创建一个拓扑的实例
        StormTopology wordCountTopology = builder.createTopology();

        // 本地模拟集群
        LocalCluster cluster = new LocalCluster();

        Config config = new Config();

        // 将拓扑提交到本地模拟集群
        cluster.submitTopology("wordCountTopology", config, wordCountTopology);

        // 睡眠10s,也就是让本地模拟集群运行10s
        Utils.sleep(10000);

        // 关闭本地模拟集群
        cluster.shutdown();

    }

}
LineSpout.java
package com.bjsxt.storm.wc;

import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
import backtype.storm.utils.Utils;

import java.util.Map;

public class LineSpout extends BaseRichSpout {

    private SpoutOutputCollector collector;

    private String[] lines = {
            "The logic for a realtime application is packaged into a Storm topology",
            "A stream is an unbounded sequence of tuples that is processed and created in parallel in a distributed fashion",
            "A spout is a source of streams in a topology",
            "Bolts can do anything from filtering, functions, aggregations, joins, talking to databases, and more.",
            "A stream grouping defines how that stream should be partitioned among the bolt's tasks.",
            "Storm guarantees that every spout tuple will be fully processed by the topology",
            "Each spout or bolt executes as many tasks across the cluster",
            "Each worker process is a physical JVM and executes a subset of all the tasks for the topology"
    };

    private int index = 0;

    @Override
    public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
        // 在该组件在集群中初始化的时候调用一次
        this.collector = collector;
    }

    @Override
    public void nextTuple() {
        // 由storm的线程不停地调用,以便从数据源获取元组
        // 该方法不需要自己写循环和遍历
        // 该方法不能阻塞
        // 负责从数据源获取元组,向DAG发送元组
        // 轮询取出句子
        String lingStr = lines[index % lines.length];
        // 将句子封装为元组发射
        collector.emit(new Values(lingStr));
        index++;

        Utils.sleep(10);
    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        // 用于声明元组的结构以及流
//        declarer.declareStream("s1", new Fields("key1", "key2", "key3"));
//        declarer.declareStream("s2", new Fields("key21", "key22"));
        // 发送元组的时候就有一个字段,是line,它的值是句子
        // 可以将元组想象为map集合,只不过其key是固定的几个
        declarer.declare(new Fields("line"));
    }
}
SplitBolt.java
package com.bjsxt.storm.wc;

import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;

import java.util.Map;

public class SplitBolt extends BaseRichBolt {

    private OutputCollector collector;

    @Override
    public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
        this.collector = collector;
    }

    @Override
    public void execute(Tuple input) {
        String lineStr = input.getStringByField("line");
        String[] wordStrs = lineStr.split(" ");

        for (String wordStr : wordStrs) {
            // <hello, 1>
            this.collector.emit(new Values(wordStr, 1));
        }

    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(new Fields("word", "count"));
    }
}
CountBolt.java
package com.bjsxt.storm.wc;

import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichBolt;
import backtype.storm.tuple.Tuple;

import java.util.HashMap;
import java.util.Map;

public class CountBolt extends BaseRichBolt {

    private Map<String, Integer> counts;

    @Override
    public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
        counts = new HashMap<>();
    }

    @Override
    public void execute(Tuple input) {
//        new Fields("word", "count")
        String wordStr = input.getStringByField("word");
        Integer count = input.getIntegerByField("count");

        Integer sum = counts.get(wordStr);

        if (sum == null) {
            counts.put(wordStr, count);
        } else {
            counts.put(wordStr, sum + count);
        }

        counts.forEach((k, v) -> {
            System.out.println(k + "_________" + v);
        });
        System.out.println("========================================");
    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {

    }
}

4、运行

右键运行WordCountTopology

二、Storm整体架构

大数据-Storm流式框架(二)--wordcount案例,Storm,大数据,storm

Storm配置项

说明

java.library.path

Storm本身依赖包的路径,存在多个时用冒号分隔

storm.local.dir

Storm使用的本地文件系统目录(必须存在并且storm进程可读写)。默认是storm的根目录下的storm-local。

storm.zookeeper.servers

storm集群对应的zookeeper集群的主机列表

storm.zookeeper.port

storm集群对应的zookeeper集群的服务端口,zookeeper默认端口为2181

storm.zookeeper.root

storm的元数据在zookeeper中存储的根目录,默认值是/storm

storm.cluster.mode

storm运行模式,local或distributed。集群模式需设置为distributed

storm.messaging.transport

storm的消息传输机制,使用netty作为消息传输时设置为backtype.storm.messaging.netty.Context

nimbus.host

整个storm集群的nimbus节点

nimbus.supervisor.timeout.secs

storm中每个被发射出去的消息处理的超时时间,该时间影响到消息的处理,同时在storm ui上杀掉一个拓扑时的默认时间(kill动作发出后多长时间才会真正将该拓扑杀掉)。默认值是60

ui.port

storm自带UI,以http服务形式支持访问,此处设置该http服务的端口(非root用户端口号需要大于1024)

ui.childopts

storm UI进程的java参数设置(对java进程的约束都可以在此设置,如内存等)

logviewer.port

此处用于设置该Log Viewer进程的端口(Log Viewer进程也是http形式,需要运行在每个storm节点上)。默认值8000

logviewer.childopts

Log Viewer进程的参数设置

logviewer.appender.name

storm log4j的appender,设置的名字对应于文件storm/log4j2/cluster.xml中设置的appender,cluster.xml可以控制storm logger的级别

supervisor.slots.ports

storm的slot,最好设置为OS核数的整数倍;同时由于storm是基于内存的实时计算,slot数不要大于每台物理机可运行slot个数:(物理内存-虚拟内存)/单个java进程最大可占用内存数

worker.childopts

storm的worker进程的java限制,有效地设置该参数能够在拓扑异常时进行原因分析:

-Xms1024m -Xmx1024m -XX:+UseConcMarkSweepGC -XX:+UseCMSInitiatingOccupancyOnly -XX:CMSInitiatingOccupancyFraction=70 -XX:+HeapDumpOnOutOfMemoryError

其中:Xms为单个java进程最小占用内存数,Xmx为最大占用内存数,设置HeapDumpOnOutOfMemoryError的好处是,当内存使用量超过Xmx时,java进程将被JVM杀掉同时会生成java_pid<pid数字>.hprof文件,使用MemoryAnalyzer分析hprof文件将能分析出内存使用情况从而进行相应的调整、分析是否有内存溢出等情况

storm.messaging.netty.buffer_size

netty传输的buffer大小,默认为5MB,当spout发射的消息较大时,此处需要对应调整

storm.messaging.netty.max_retries

这几个参数是关于使用netty作为底层消息传输时的相关设置,需要重视,否则可能由于bug而引起错误:

java.lang.IllegalArgumentException: timeout value is negative

storm.messaging.netty.max_wait_ms

storm.messaging.netty.min_wait_ms

topology.debug

该参数可以在拓扑中覆盖,表示该拓扑是否运行于debug模式。运行于debug模式时,storm将记录拓扑中收发消息等的详细信息,线上环境不建议打开

topology.acker.executors

storm通过acker机制保证消息不丢失,此参数用于设置每个拓扑的acker数量,由于acker基本消耗的资源较小,强烈建议将此参数设置在较低的水平,可以在拓扑中进行覆盖

topology.max.spout.pending

一个spout任务中处于pending状态的最大元组数量。该配置应用于单个任务,而不是整个spout或拓扑,可在拓扑中进行覆盖。

此外,storm/log4j2/cluster.xml文件中可以配置storm的日志级别矩阵信息等。

操作系统的配置,其中有两项需要配置(通过ulimit -a查看):

1、open files:当前用户可以打开的文件描述符数。

2、max user processes:当前用户可以运行的进程数,此参数太小将引起storm的一个错误:

java.lang.OutOfMemoryError: unable to create new native thread

部署注意事项:

  1. 在storm根目录下有一个lib目录,存放storm本身依赖的jar包,此处的所有jar会被storm worker进行启动时加载,个人编写的jar包不能放在此处,以免包更新带来不便
  2. 向storm集群提交拓扑时,建议将该拓扑所有依赖的jar包和业务源代码打到一个jar包中(fat jar),如此则业务需要的jar包都和拓扑在同一个jar包中,否则当拓扑依赖的jar包更新时需要将该更新包放到所有的storm节点上。如果是在一个集群中,fat jar可以保证不同业务的jar包是独立的,不会混淆。

nimbus

  1. 接收jar包:提交应用拓扑
  2. 任务分配:将拓扑的任务分配给worker
  3. 资源调度:监控各个supervisor节点的状态进行负载均衡等。
  4. Nimbus不需要像supervisor节点那么高的配置,storm ui也不需要高配置,可以和nimbus节点运行在同一台服务器节点上。

supervisor

  1. 监听nimbus的任务分配,启动分配到的worker来对相应的任务进行处理。
  2. 监控本地的worker进程,如果发现状态不正常会杀死worker并重启,超过一定次数后将分配给该错误状态的worker的任务交还给nimbus进行再次分配。
  3. 删除本地不再运行的任务

worker

完成拓扑中定义的业务逻辑,即执行拓扑的进程。

一个worker的基本执行步骤:

  1. 根据zookeeper中拓扑的组件分配变化,创建或移除worker到worker的链接
  2. 创建executor(执行器)的输入队列receive-queue-map和输出队列transfer-queue
  3. 创建worker的接收线程receive-thread和发送线程transfer-thread
  4. 根据组件分配关系创建executor
    1. executor即worker JVM进程中的一个java线程,一般默认每个executor负责执行一个task任务
  5. 在executor中执行具体的任务(spout或者bolt)来执行具体的业务逻辑。
    1. 检查需要运行的task信息
    2. 获取相应的task信息,即spout/bolt信息

每个任务对应一个线程或多个任务对应一个线程

线程称为executor

executor在worker中运行

worker是一个JVM进程

在supervisor中运行

worker中的数据流:

worker中线程间通信使用的是Disruptor,进程间通信可能是netty也可以是zmq。默认使用netty。

数据流:

大数据-Storm流式框架(二)--wordcount案例,Storm,大数据,storm

  1. 每个worker绑定一个socket端口作为数据的输入,此端口作为socket的服务器端一直监听运行。
  2. 根据拓扑的关系,确定需要向外通信的任务所在的worker地址,并同该worker也创建好socket连接,此时该worker是作为socket的客户端。
  3. receive thread负责将每个executor所需要的数据放入对应的receive-queue-map中,然后由executor来获取自己所需要的数据,这个过程通过disruptor进行通信。
  4. executor执行完操作需要对外发送数据时,首先kryo将数据序列化,然后通过disruptor将数据放入对外的transfer-queue中。
  5. transfer thread完成数据的发送工作。
  6. 如果executor需要对外发送的数据接收方和executor在同一个worker节点,则不需要执行序列化操作,调用disruptor的publish方法直接放到接收方的executor对应的队列中即可。

与MapReduce架构的对比:

大数据-Storm流式框架(二)--wordcount案例,Storm,大数据,storm

提交作业过程

大数据-Storm流式框架(二)--wordcount案例,Storm,大数据,storm

  1. 客户端提交拓扑代码到nimbus的nimbus/inbox目录下。
  2. nimbus对topology进行校验、处理
  3. nimbus针对该拓扑建立本地目录:nimbus/stormdist/topology-id

该目录下有三个文件:文章来源地址https://www.toymoban.com/news/detail-715488.html

    1. stormjar.jar 从nimbus/inbox移动来的topology的jar包
    2. stormcode.ser 对topology对象的序列化
    3. stormconf.ser topology的运行配置信息
  1. nimbus的调度器根据拓扑的配置计算task,并把task分配到不同的worker上,调度的结果写入zookeeper的/task节点下。
  2. zookeeper上建立assignments节点,存储task和supervisor中worker的对应关系。
  3. zookeeper上创建workerbeats节点监控worker的心跳。
  4. supervisor去zookeeper上获取分配的task信息,启动一个或多个worker来执行。
  5. 每个worker上运行多个task,task由executor来执行。
  6. worker根据拓扑信息初始化建立task之间的连接
  7. 相同worker内的task通过DisruptorQueue通信,不同worker间默认采用netty通信

到了这里,关于大数据-Storm流式框架(二)--wordcount案例的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 大数据组件之storm简介

    Storm 是一款由 Twitter 开发的分布式实时计算系统,是一款用于处理大规模数据流的工具。随着大数据技术的快速发展,实时计算和实时数据处理已经成为了现代企业数据处理的必备技能,而 Storm 的出现为这一领域提供了强大的支持。在本文中,我们将为您详细介绍 Storm 这款

    2024年04月28日
    浏览(25)
  • 大数据与云计算——Storm详细配置(保姆级教程!)

    当今世界正处于云计算和大数据的快速发展阶段,而Storm作为一种高效、可靠的实时计算框架,受到了广泛的关注和应用。在这篇文章中,我们将从头开始,将提供一份保姆级教程,帮助进行相关配置和运行WordCountTopology。向您展示如何配置Storm环境。我们将详细介绍所需的软

    2024年02月03日
    浏览(38)
  • 数据架构的实时分析:Apache Flink 和 Apache Storm 的比较

    实时数据处理在大数据领域具有重要意义,它可以帮助企业更快地获取和分析数据,从而更快地做出决策。随着数据量的增加,传统的批处理方法已经不能满足企业的需求,因此需要使用实时数据处理技术。 Apache Flink 和 Apache Storm 是两个流行的实时数据处理框架,它们都可以

    2024年01月23日
    浏览(41)
  • 大数据技术学习之Storm、Spark学习手册,这还不码住学起来

    Storm与Spark、Hadoop这三种框架,各有各的优点,每个框架都有自己的最佳应用场景。所以,在不同的应用场景下,应该选择不同的框架。 1.Storm是最佳的流式计算框架,Storm由Java和Clojure写成,Storm的优点是全内存计算,所以它的定位是分布式实时计算系统,按照Storm作者的说法

    2024年02月04日
    浏览(31)
  • storm统计服务开启zookeeper、kafka 、Storm(sasl认证)

    部署storm统计服务开启zookeeper、kafka 、Storm(sasl认证) 当前测试验证结果: 单独配置zookeeper 支持acl 设置用户和密码,在storm不修改代码情况下和kafka支持 当kafka 开启ACL时,storm 和ccod模块不清楚配置用户和密码。 使用python脚本连接kafka用户和密码是能成功发送消息。 当前部署

    2024年01月22日
    浏览(40)
  • Storm学习之使用官方Docker镜像快速搭建Storm运行环境

    Apache Storm 官方也出了Docker 镜像 https://hub.docker.com/_/storm/ 本文我们就基于官方镜像搭建一个 Apache Storm 2.4 版本的运行环境,供大家后续学习。 有问题可以参考issue 解决, 我的安装过程一路都很顺畅。所以基本上没有看下面是我的详细操作和截图 。 可以说网上的乱七八糟的教

    2024年02月14日
    浏览(38)
  • 大数据平台安装实验: ZooKeeper、Kafka、Hadoop、Hbase、Hive、Scala、Spark、Storm

    ​ 在大数据时代,存在很多开源的分布式数据采集、计算、存储技术,本实验将在熟练掌握几种常见Linux命令的基础上搭建几种常用的大数据采集、处理分析技术环境。 相关安装包下载: 链接:https://pan.baidu.com/s/1Wa2U3qstc54IAUCypcApSQ 提取码:lcd8 Hadoop大数据平台所需工具、软件

    2023年04月09日
    浏览(80)
  • “1+X“大数据平台运维职业技能等级证书(中级)模拟题-Storm组件部署

    目录 一、前置说明 二、Storm相关知识(必看,仅应对考试) 三、Storm部署 3.1、Zookeeper集群安装并启动 3.2、解压Storm,并配置conf/storm.yaml 3.3、启动storm集群 3.3.1、前台运行 3.3.2、挂载后台运行 3.4、web查看 这个是我自己电脑的环境,考试会变动 环境表 主机名 IP地址 masterNode1

    2024年02月07日
    浏览(48)
  • MacBook安装Storm与启动

    MacBook安装Storm与启动 官方下载地址: https://storm.apache.org/downloads.html 官方下载 apache-storm-1.2.2.tar.gz MacBook Linux安装zookeeper 访问ui: http://127.0.0.1:8081/index.html 参考链接: https://www.cnblogs.com/freeweb/p/5234139.html https://www.cnblogs.com/senlinyang/p/7832324.html https://www.cnblogs.com/zhaojiankai/p/7257617.html

    2024年01月18日
    浏览(29)
  • Spark, Storm, Flink简介

    本文主要介绍Spark, Storm, Flink的区别。 Spark和Storm都是大数据处理框架,但它们在设计理念和使用场景上有一些区别: 实时性:Storm是一个实时计算框架,适合需要实时处理的场景;而Spark是一个批处理框架,虽然其提供的Spark Streaming模块可以进行近实时处理,但其本质上还是

    2024年04月12日
    浏览(26)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包