线性代数:克莱姆法则学习笔记
一、什么是克莱姆法则?
克莱姆(Cramer)法则又称为克拉默法则,是在线性代数中解决线性方程组问题的一种方法。克莱姆法则的基本思想是通过用系数矩阵的行列式来判断线性方程组是否有唯一解,从而进一步求出各个未知数的值。其原理基于克莱姆定理:
对于 n 元线性方程组 Ax = b,如果系数矩阵 A 的行列式值不等于 0,则该方程组有且仅有一个解,其解向量 x 可以通过如下公式计算得出:
x i = ∣ a 11 ⋯ a 1 , i − 1 b 1 a 1 , i + 1 ⋯ a 1 , n ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ a n 1 ⋯ a n , i − 1 b n a n , i + 1 ⋯ a n n ∣ ∣ a 11 ⋯ a 1 , i − 1 a 1 , i a 1 , i + 1 ⋯ a 1 , n ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ a n 1 ⋯ a n , i − 1 a n , i a n , i + 1 ⋯ a n n ∣ x_i=\dfrac{\begin{vmatrix} a_{11}&\cdots&a_{1,i-1}&b_1&a_{1,i+1}&\cdots&a_{1,n}\\ \vdots&\ddots&\vdots&\vdots&\vdots&\ddots&\vdots\\ a_{n1}&\cdots&a_{n,i-1}&b_n&a_{n,i+1}&\cdots&a_{nn}\\ \end{vmatrix}}{\begin{vmatrix} a_{11}&\cdots&a_{1,i-1}&a_{1,i}&a_{1,i+1}&\cdots&a_{1,n}\\ \vdots&\ddots&\vdots&\vdots&\vdots&\ddots&\vdots\\ a_{n1}&\cdots&a_{n,i-1}&a_{n,i}&a_{n,i+1}&\cdots&a_{nn}\\ \end{vmatrix}} xi= a11⋮an1⋯⋱⋯a1,i−1⋮an,i−1a1,i⋮an,ia1,i+1⋮an,i+1⋯⋱⋯a1,n⋮ann a11⋮an1⋯⋱⋯a1,i−1⋮an,i−1b1⋮bna1,i+1⋮an,i+1⋯⋱⋯a1,n⋮ann
其中 x i x_i xi 表示第 i 个未知数的解, a i j a_{ij} aij 为系数矩阵 A 中第 i 行、第 j 列对应的元素, b i b_i bi 是线性方程组中第 i 个等式右侧常数。
二、克莱姆法则的应用
2.1 二元线性方程组
对于二元线性方程组:
{ a x + b y = c d x + e y = f \begin{cases} ax+by=c\\ dx+ey=f \end{cases} {ax+by=cdx+ey=f
其系数矩阵 A 和常数向量 b 分别为:
A = ( a b d e ) , b = ( c f ) A=\begin{pmatrix} a & b \\ d & e \\ \end{pmatrix} , b=\begin{pmatrix} c \\ f \\ \end{pmatrix} A=(adbe),b=(cf)
由克莱姆法则可得:
x = ∣ c b f e ∣ ∣ a b d e ∣ , y = ∣ a c d f ∣ ∣ a b d e ∣ x=\dfrac{\begin{vmatrix} c&b\\ f&e\\ \end{vmatrix}}{\begin{vmatrix} a&b\\ d&e\\ \end{vmatrix}} , y=\dfrac{\begin{vmatrix} a&c\\ d&f\\ \end{vmatrix}}{\begin{vmatrix} a&b\\ d&e\\ \end{vmatrix}} x= adbe cfbe ,y= adbe adcf
2.2 三元线性方程组
对于三元线性方程组:
{ a x + b y + c z = d e x + f y + g z = h i x + j y + k z = l \begin{cases} ax+by+cz=d\\ ex+fy+gz=h\\ ix+jy+kz=l \end{cases} ⎩ ⎨ ⎧ax+by+cz=dex+fy+gz=hix+jy+kz=l
其系数矩阵 A 和常数向量 b 分别为:
A = ( a b c e f g i j k ) , b = ( d h l ) A=\begin{pmatrix} a & b & c \\ e & f & g \\ i & j & k \\ \end{pmatrix}, b=\begin{pmatrix} d \\ h \\ l \\ \end{pmatrix} A= aeibfjcgk ,b= dhl
由克莱姆法则可得:
x = ∣ d b c h f g l j k ∣ ∣ a b c e f g i j k ∣ , y = ∣ a d c e h g i l k ∣ ∣ a b c e f g i j k ∣ , z = ∣ a b d e f h i j l ∣ ∣ a b c e f g i j k ∣ x=\dfrac{\begin{vmatrix} d&b&c\\ h&f&g\\ l&j&k\\ \end{vmatrix}}{\begin{vmatrix} a&b&c\\ e&f&g\\ i&j&k\\ \end{vmatrix}}, y=\dfrac{\begin{vmatrix} a&d&c\\ e&h&g\\ i&l&k\\ \end{vmatrix}}{\begin{vmatrix} a&b&c\\ e&f&g\\ i&j&k\\ \end{vmatrix}}, z=\dfrac{\begin{vmatrix} a&b&d\\ e&f&h\\ i&j&l\\ \end{vmatrix}}{\begin{vmatrix} a&b&c\\ e&f&g\\ i&j&k\\ \end{vmatrix}} x= aeibfjcgk dhlbfjcgk ,y= aeibfjcgk aeidhlcgk ,z= aeibfjcgk aeibfjdhl
三、使用 numpy 模块求解线性方程组
在 Python 中,我们可以使用 numpy 模块的 linalg.solve() 函数求解线性方程组。其用法为:
import numpy as np
# 系数矩阵 A
A = np.array([
[1, 2, 3],
[2, 5, 2],
[6, -3, 1]
])
# 常数向量 b
b = np.array([9, 8, 4])
# 求解 Ax = b
x = np.linalg.solve(A, b)
# 输出解向量 x
print(x)
输出结果为:
[ 2.0625 -1.625 2.75 ]
四、克莱姆法则的优缺点
4.1 优点
克莱姆法则的优点是实现简单,只需要计算若干个行列式即可求出每个未知数的解。此外,由于其基本思想与线性代数中的其他方法不同,因此在一些特殊情况下,如待求系数过多或系数矩阵稀疏等情况下,克莱姆法则可能会比其他方法更高效。
4.2 缺点
然而,克莱姆法则的计算复杂度相对较高,需要计算若干个行列式,因此在系数矩阵过大时很容易受到计算机运算速度的限制。此外,若系数矩阵的行列式为 0,克莱姆法则将无法得到结果。在此种情况下,我们需要选择其他的线性方程组求解方法。文章来源:https://www.toymoban.com/news/detail-715633.html
总结
本文详细介绍了克莱姆法则在线性代数中解决线性方程组问题的方法。通过讲解克莱姆法则的基本思想和原理,以及在二元线性方程组和三元线性方程组中的应用,帮助读者掌握了该方法的具体使用。同时,文章还介绍了使用 numpy 模块求解线性方程组的方法,并且对克莱姆法则的优缺点进行了分析。文章来源地址https://www.toymoban.com/news/detail-715633.html
到了这里,关于线性代数:克莱姆法则学习笔记的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!