分享8个分布式Kafka的使用场景

这篇具有很好参考价值的文章主要介绍了分享8个分布式Kafka的使用场景。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Kafka 最初是为海量日志处理而构建的。它保留消息直到过期,并让消费者按照自己的节奏提取消息。与它的前辈不同,Kafka 不仅仅是一个消息队列,它还是一个适用于各种情况的开源事件流平台。

1. 日志处理与分析

  • 下图显示了典型的 ELK(Elastic-Logstash-Kibana)堆栈。Kafka 有效地从每个实例收集日志流。
  • ElasticSearch 使用来自 Kafka 的日志并为其建立索引。Kibana 在 ElasticSearch 之上提供了搜索和可视化 UI。

分享8个分布式Kafka的使用场景,分布式,kafka

2. 推荐中的数据流

  • 大型电子商务网站使用过去的行为和相似的用户来计算产品推荐。
  • 下图展示了推荐系统的工作原理。Kafka 传输原始点击流数据,Flink 对其进行处理,模型训练则使用来自数据湖的聚合数据。
  • 这使得能够持续改进每个用户的推荐的相关性。Kafka 的另一个重要用例是实时点击流分析。

分享8个分布式Kafka的使用场景,分布式,kafka

3. 系统监控与报警

  • 与日志分析系统类似,我们需要收集系统指标以进行监控和故障排除。
  • 区别在于指标是结构化数据,而日志是非结构化文本。指标数据发送到 Kafka 并在 Flink 中聚合。聚合数据由实时监控仪表板和警报系统使用。

分享8个分布式Kafka的使用场景,分布式,kafka

4. CDC(变更数据捕获)

  • 更改数据捕获 (CDC) 将数据库更改流式传输到其他系统以进行复制或缓存/索引更新。
  • Kafka 还是构建数据管道的绝佳工具,这意味着您可以使用它从各种来源获取数据、应用处理规则并将数据存储在仓库、数据湖或数据网格中。
  • 例如,在下图中,事务日志发送到 Kafka 并由 ElasticSearch、Redis 和辅助数据库摄取。

分享8个分布式Kafka的使用场景,分布式,kafka

5. 系统迁移

  • 升级遗留服务具有挑战性——旧的语言、复杂的逻辑和缺乏测试。我们可以通过利用消息传递中间件来降低风险。
  • 在下图中,为了升级下图中的订单服务,我们更新旧的订单服务以使用来自 Kafka 的输入并将结果写入 ORDER 主题。新订单服务使用相同的输入并将结果写入 ORDERNEW 主题。
  • 调节服务比较 ORDER 和 ORDERNEW。如果它们相同,则新服务通过测试。

分享8个分布式Kafka的使用场景,分布式,kafka文章来源地址https://www.toymoban.com/news/detail-716009.html

6. 事件溯源

  • 事件溯源就是捕获一系列事件中状态的变化。通常使用 Kafka 作为主要事件存储。如果发生任何故障、回滚或需要重建状态,您可以随时重新应用 Kafka 中的事件。

7. 消息传递

  • Kafka 最好和最常见的用例之一是作为消息队列。Kafka 为您提供了一个可靠且可扩展的消息队列,可以处理大量数据。
  • 我们可以将您的消息组织成“主题”,这意味着您将每条消息发布到一个特定主题,而另一方面,消费者将订阅一个或多个主题并消费其中的消息。
  • 微服务之间解耦通信的最大优点是,您可以随时向这些事件添加新服务,而无需增加系统的复杂性或不必更改任何源代码。

8. 提交日志

  • Kafka 可以充当分布式系统的一种外部提交日志。日志有助于在节点之间复制数据,并充当故障节点恢复数据的重新同步机制。
  • Kafka 中的日志压缩功能有助于支持这种用法。

到了这里,关于分享8个分布式Kafka的使用场景的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 分布式消息流处理平台kafka(一)-kafka单机、集群环境搭建流程及使用入门

    kafka最初是LinkedIn的一个内部基础设施系统。最初开发的起因是,LinkedIn虽然有了数据库和其他系统可以用来存储数据,但是缺乏一个可以帮助处理持续数据流的组件。 所以在设计理念上,开发者不想只是开发一个能够存储数据的系统,如关系数据库、Nosql数据库、搜索引擎等

    2024年02月16日
    浏览(52)
  • 分布式消息服务kafka

    什么是消息中间件? 消息中间件是分布式系统中重要的组件,本质就是一个具有接收消息、存储消息、分发消息的队列,应用程序通过读写队列消息来通信。 例如:在淘宝购物时,订单系统处理完订单后,把订单消息发送到消息中间件中,由消息中间件将订单消息分发到下

    2024年02月01日
    浏览(48)
  • 【分布式应用】kafka集群、Filebeat+Kafka+ELK搭建

    主要原因是由于在高并发环境下,同步请求来不及处理,请求往往会发生阻塞。比如大量的请求并发访问数据库,导致行锁表锁,最后请求线程会堆积过多,从而触发 too many connection 错误,引发雪崩效应。 我们使用消息队列,通过异步处理请求,从而缓解系统的压力。消息队

    2024年02月16日
    浏览(53)
  • 【分布式技术】消息队列Kafka

    目录 一、Kafka概述 二、消息队列Kafka的好处 三、消息队列Kafka的两种模式 四、Kafka 1、Kafka 定义 2、Kafka 简介 3、Kafka 的特性 五、Kafka的系统架构 六、实操部署Kafka集群  步骤一:在每一个zookeeper节点上完成kafka部署 ​编辑 步骤二:传给其他节点 步骤三:启动3个节点 kafka管理

    2024年01月23日
    浏览(55)
  • 分布式 - 消息队列Kafka:Kafka 消费者的消费位移

    01. Kafka 分区位移 对于Kafka中的分区而言,它的每条消息都有唯一的offset,用来表示消息在分区中对应的位置。偏移量从0开始,每个新消息的偏移量比前一个消息的偏移量大1。 每条消息在分区中的位置信息由一个叫位移(Offset)的数据来表征。分区位移总是从 0 开始,假设一

    2024年02月12日
    浏览(50)
  • 分布式 - 消息队列Kafka:Kafka消费者的分区分配策略

    Kafka 消费者负载均衡策略? Kafka 消费者分区分配策略? 1. 环境准备 创建主题 test 有5个分区,准备 3 个消费者并进行消费,观察消费分配情况。然后再停止其中一个消费者,再次观察消费分配情况。 ① 创建主题 test,该主题有5个分区,2个副本: ② 创建3个消费者CustomConsu

    2024年02月13日
    浏览(47)
  • 分布式 - 消息队列Kafka:Kafka生产者架构和配置参数

    生产者发送消息流程参考图1: 先从创建一个ProducerRecord对象开始,其中需要包含目标主题和要发送的内容。另外,还可以指定键、分区、时间戳或标头。在发送ProducerRecord对象时,生产者需要先把键和值对象序列化成字节数组,这样才能在网络上传输。 接下来,如果没有显式

    2024年02月13日
    浏览(50)
  • 分布式 - 消息队列Kafka:Kafka生产者发送消息的方式

    不管是把Kafka作为消息队列、消息总线还是数据存储平台,总是需要一个可以往Kafka写入数据的生产者、一个可以从Kafka读取数据的消费者,或者一个兼具两种角色的应用程序。 Kafka 生产者是指使用 Apache Kafka 消息系统的应用程序,它们负责将消息发送到 Kafka 集群中的一个或多

    2024年02月13日
    浏览(44)
  • 分布式 - 消息队列Kafka:Kafka消费者和消费者组

    1. Kafka 消费者是什么? 消费者负责订阅Kafka中的主题,并且从订阅的主题上拉取消息。与其他一些消息中间件不同的是:在Kafka的消费理念中还有一层消费组的概念,每个消费者都有一个对应的消费组。当消息发布到主题后,只会被投递给订阅它的每个消费组中的一个消费者

    2024年02月13日
    浏览(45)
  • 分布式 - 消息队列Kafka:Kafka 消费者消费位移的提交方式

    最简单的提交方式是让消费者自动提交偏移量,自动提交 offset 的相关参数: enable.auto.commit:是否开启自动提交 offset 功能,默认为 true; auto.commit.interval.ms:自动提交 offset 的时间间隔,默认为5秒; 如果 enable.auto.commit 被设置为true,那么每过5秒,消费者就会自动提交 poll() 返

    2024年02月12日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包