考研数学中放缩法和无穷项求和

这篇具有很好参考价值的文章主要介绍了考研数学中放缩法和无穷项求和。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

放缩法专题

本文以例子为切入,对一些常用的放缩方法进行总结归纳,以期让读者对相关问题有一定的应对手段。

例子1

问题:2020年高数甲,选择题第1题。
lim ⁡ n → + ∞ ( 2 n 2 + 4 n 2 + 1 + ⋯ + 2 n n 2 + n + 1 ) \lim_{n\to+\infty}\left( \frac{2}{n^2}+\frac{4}{n^2+1}+\cdots + \frac{2n}{n^2+n+1}\right) n+lim(n22+n2+14++n2+n+12n)

解答:这个问题比较简单,只要注意到分母在 n → + ∞ n\to+\infty n+的过程中, n 2 n^2 n2占主导项,那么就可以把分母统一起来,可以缩小到 n 2 n^2 n2,也可以放大到 n 2 + n + 1 n^2+n+1 n2+n+1

分母统一后注意到 2 + 4 + ⋯ + 2 n = 2 × n ( n + 1 ) 2 2+4+\cdots + 2n=2\times\frac{n(n+1)}{2} 2+4++2n=2×2n(n+1),那么极限就是分子和分母 n 2 n^2 n2项系数之比。

归纳总结

  • 放缩的项,尽量是不重要的项。

类似题目

  • 2017年高数甲,选择题第2题;2013年高数甲,选择题第2题。

例子2

问题:2019年高数甲,选择题第一题。

求极限:
lim ⁡ n → ∞ [ ( 1 + 1 2 ! + 1 3 ! + ⋯ 1 n ! ) + ( 1 1 × 3 + 1 3 × 5 + ⋯ 1 ( 2 n − 1 ) × ( 2 n + 1 ) ) ] \lim_{n\to\infty}\left[\left(1+\frac{1}{2!}+\frac{1}{3!}+\cdots \frac{1}{n!}\right)+\left(\frac{1}{1\times 3}+\frac{1}{3\times 5}+\cdots \frac{1}{(2n-1)\times (2n+1)}\right)\right] nlim[(1+2!1+3!1+n!1)+(1×31+3×51+(2n1)×(2n+1)1)]
A. e − 1 2 e-\frac{1}{2} e21

B. 5 2 \frac{5}{2} 25

C. e + 1 2 e+\frac{1}{2} e+21

D. 7 2 \frac{7}{2} 27

解答:这个问题作为选择题比较简单,要直接求极限则很复杂。

首先注意到,中括号中,两项极限肯定都存在。因为这两个求和项都比调和级数小,所以一定各自收敛。

那再看第二项 ( 1 1 × 3 + 1 3 × 5 + ⋯ 1 ( 2 n − 1 ) × ( 2 n + 1 ) ) \left(\frac{1}{1\times 3}+\frac{1}{3\times 5}+\cdots \frac{1}{(2n-1)\times (2n+1)}\right) (1×31+3×51+(2n1)×(2n+1)1),这里很明显应该用裂项消除来做,只要注意到:
1 ( 2 n − 1 ) ( 2 n + 1 ) = 1 2 ( 1 2 n − 1 − 1 2 n + 1 ) \frac{1}{(2n-1)(2n+1)}=\frac{1}{2}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right) (2n1)(2n+1)1=21(2n112n+11)
那么,裂项就可以化成:
1 2 ( 1 − 1 3 + 1 3 − 1 5 + ⋯ − 1 2 n + 1 ) \frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\cdots-\frac{1}{2n+1}\right) 21(131+3151+2n+11)
很显然,此项的极限是 1 2 \frac{1}{2} 21

再看第一项,乍一看这是一个很难的极限,但注意到选项中出现了 e e e,可以意识到它可能和两个重要极限中的
lim ⁡ n → ∞ ( 1 + 1 n ) n \lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n nlim(1+n1)n
曾使用过此项:
lim ⁡ n → ∞ ( 1 + 1 2 ! + 1 3 ! + ⋯ 1 n ! ) \lim_{n\to\infty}\left(1+\frac{1}{2!}+\frac{1}{3!}+\cdots \frac{1}{n!}\right) nlim(1+2!1+3!1+n!1)

这里回顾一下证明重要极限的过程就可以理解了,直接用二项式定理公式展开:
( 1 + 1 n ) n = 1 + ( n 1 ) 1 n + ( n 2 ) 1 n 2 + ⋯ + ( n n ) 1 n n = 1 + n 1 ! ⋅ 1 n + n ( n − 1 ) 2 ! ⋅ 1 n 2 + ⋯ + n ( n − 1 ) ( n − 2 ) ⋯ ( n − n + 1 ) n ! ⋅ 1 n n = 1 + 1 + 1 2 ! ⋅ n ( n − 1 ) n 2 + ⋯ + 1 n ! ⋅ n ( n − 1 ) ( n − 2 ) ⋯ ( n − n + 1 ) n n ≤ 1 + 1 + 1 2 ! + 1 3 ! + ⋯ 1 n ! \begin{aligned} \left(1+\frac{1}{n}\right)^n&=1+{n\choose 1}\frac{1}{n}+{n\choose 2}\frac{1}{n^2}+\cdots +{n\choose n}\frac{1}{n^n} \\ &= 1+\frac{n}{1!}\cdot \frac{1}{n}+\frac{n(n-1)}{2!}\cdot \frac{1}{n^2}+\cdots+\frac{n(n-1)(n-2)\cdots (n-n+1)}{n!}\cdot \frac{1}{n^n} \\ &=1+1+\frac{1}{2!}\cdot \frac{n(n-1)}{n^2}+\cdots+\frac{1}{n!}\cdot \frac{n(n-1)(n-2)\cdots (n-n+1)}{n^n} \\ &\le 1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots \frac{1}{n!} \end{aligned} (1+n1)n=1+(1n)n1+(2n)n21++(nn)nn1=1+1!nn1+2!n(n1)n21++n!n(n1)(n2)(nn+1)nn1=1+1+2!1n2n(n1)++n!1nnn(n1)(n2)(nn+1)1+1+2!1+3!1+n!1

因此
lim ⁡ n → ∞ ( 1 + 1 2 ! + 1 3 ! + ⋯ 1 n ! ) ≥ e − 1 \lim_{n\to\infty}\left(1+\frac{1}{2!}+\frac{1}{3!}+\cdots \frac{1}{n!}\right)\ge e-1 nlim(1+2!1+3!1+n!1)e1

即使不记得此式,也应该记得重要极限的证明过程中,怎么确定上限的,那就是一个经典的放缩:
只需要注意到,函数的增长速度 2 n − 1 < n ! < n n 2^{n-1}<n!<n^n 2n1<n!<nn,将阶乘放缩到 n n n^n nn是没用的,因为 ∑ n = 1 ∞ 1 n n \sum_{n=1}^{\infty}\frac{1}{n^n} n=1nn1求和仍然不好求,放缩到 2 n − 1 2^{n-1} 2n1可以凑等比数列。可以得到:
lim ⁡ n → ∞ ( 1 + 1 2 ! + 1 3 ! + ⋯ 1 n ! ) < lim ⁡ n → ∞ ( 1 + 1 2 1 + 1 2 2 + ⋯ + 1 2 n − 1 ) = 2 \lim_{n\to\infty}\left(1+\frac{1}{2!}+\frac{1}{3!}+\cdots \frac{1}{n!}\right) < \lim_{n\to\infty}\left(1+\frac{1}{2^1}+\frac{1}{2^2}+\cdots +\frac{1}{2^{n-1}}\right)=2 nlim(1+2!1+3!1+n!1)<nlim(1+211+221++2n11)=2

即便 2 n 2^n 2n是能想象到的最接近 n ! n! n!的函数,但两者实际上差距仍然很大,所以这两个极限不相等,但这个不等关系已经可以排除出正确答案了。因为可以得到原式子一定小于 2 + 1 2 = 5 2 2+\frac{1}{2}=\frac{5}{2} 2+21=25,只有A选项符合这个大小。

归纳总结

  • 放缩的原则,放缩前后尽量接近;
  • 放缩后是为了方便求值,有时不必保证放缩前后极限相等,不等关系也可以选出正确答案;
  • 要对一些书上经典的证明有所了解,很多考试的技巧都在书中经典证明中出现过。

例子3

问题:2015年第二大题,计算
lim ⁡ n → ∞ 1 n ( 1 + sin ⁡ π n + 1 + sin ⁡ 2 π n + ⋯ + 1 + sin ⁡ n π n ) \lim_{n\to \infty}\frac{1}{n}\left(\sqrt{1+\sin{\frac{\pi}{n}}}+\sqrt{1+\sin{\frac{2\pi}{n}}}+\cdots + \sqrt{1+\sin{\frac{n\pi}{n}}}\right) nlimn1(1+sinnπ +1+sinn2π ++1+sinn )

解答:这个题目看上去也是无穷级数的累加,进行适当放缩。但实际上注意到 1 n \frac{1}{n} n1,应当把此极限化为定积分来计算。

归纳总结

  • 有些无穷级数累加的极限,不要盲目用放缩法,能否化为定积分更容易判断。

例子4

问题:2004年第1大题,计算
lim ⁡ n → ∞ sin ⁡ 1 + sin ⁡ 1 2 + ⋯ + sin ⁡ 1 n n \lim_{n\to\infty}\sqrt[n]{\sin1+\sin\frac{1}{2}+\cdots +\sin\frac{1}{n}} nlimnsin1+sin21++sinn1

解答:首先检验是否可以定积分计算,定积分计算必然需要找出 d x = 1 n dx=\frac{1}{n} dx=n1和定义变量 x x x取值的 i n \frac{i}{n} ni,x是等间距变化才行,而本题目中虽然可以构造 1 / n 1/n 1/n,但 sin ⁡ \sin sin内部的变化不是等间距的,因此不能用定积分。

然后检查是否可以裂项或使用三角函数等性质,制造连锁的反应,以直接求和出来,但不管和差化积、倍角公式还是乘 cos ⁡ \cos cos函数都不能实现此效果。三角函数乘积时容易用性质来做一些操作,但这里没有办法化乘积。

最后考虑放缩,如果了解一个常用的结论(证明方法也很经典,可以用均值不等式):
lim ⁡ n → ∞ n n = 1 \lim_{n\to\infty}\sqrt[n]{n}=1 nlimnn =1
那么对放缩会有一个提前的意识:即便开 n n n次根号下是一个函数 n n n,增长率是线性的,开 n n n次方结果仍会收到 1 1 1。而根号下的求和实际上肯定不如 n n n的。因此基本可以断定,这个极限结果必然是 1 1 1,为验证此观点,放缩可以大胆点:
1 < sin ⁡ 1 + sin ⁡ 1 2 + ⋯ + sin ⁡ 1 n < n 1<\sin1+\sin\frac{1}{2}+\cdots +\sin\frac{1}{n}<n 1<sin1+sin21++sinn1<n
因此:
lim ⁡ n → ∞ 1 n < lim ⁡ n → ∞ sin ⁡ 1 + sin ⁡ 1 2 + ⋯ + sin ⁡ 1 n n < lim ⁡ n → ∞ n n \lim_{n\to\infty}\sqrt[n]{1}<\lim_{n\to\infty}\sqrt[n]{\sin1+\sin\frac{1}{2}+\cdots +\sin\frac{1}{n}}<\lim_{n\to\infty}\sqrt[n]{n} nlimn1 <nlimnsin1+sin21++sinn1 <nlimnn

总结

  • 要了解一些常用的极限,判断要计算的级数的增长数量级,对放缩有一定的预估。
  • 有些操作如开 n n n次方 x n \sqrt[n]{x} nx ,本身会将很大范围内的函数收缩到 1 1 1,这时不妨放缩大胆点。

例子5

问题:2002年第一题,求解
lim ⁡ n → ∞ cos ⁡ 1 2 cos ⁡ 1 4 ⋯ cos ⁡ 1 2 n \lim_{n\to\infty}\cos\frac{1}{2}\cos\frac{1}{4}\cdots \cos\frac{1}{2^n} nlimcos21cos41cos2n1

解答:看到三角函数,各个取值是2倍关系,应当立即想到倍角公式,这里只要乘以 sin ⁡ 1 2 n \sin\frac{1}{2^n} sin2n1,即可知道如何做,当然别忘了额外乘了什么,就要除以什么。文章来源地址https://www.toymoban.com/news/detail-716255.html

到了这里,关于考研数学中放缩法和无穷项求和的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 考研数学一些曲线形状收录

    受苦于章鱼兄的题源1000题,发现在二重积分的时候压根不认识一些曲线,挨个搜出来看看他们长什么beyond 有错欢迎指出,本人很菜,公式有的是自己算的,可能会有错,不要当真 1 . r = a ( 1 − sin ⁡ ( θ ) ) r=a(1-sinleft(thetaright)) r = a ( 1 − sin ( θ ) ) 直角坐标: x 2 + y 2 = a ∗ ( 1 − y

    2023年04月15日
    浏览(36)
  • 【考研数学】数学“背诵”手册 | 需要记忆且容易遗忘的知识点

    复习到后期,去做到前面内容的题目时,有一些需要记忆的结论就比较模糊,比如微分方程的特解形式、施密特正交、各种分布的概率密度等等。我便把这些模糊的点都记录下来了,整理在一起,方便随时查阅 基本形式: f ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n . f(x)=

    2024年02月08日
    浏览(45)
  • 【考研数学二】线性代数重点笔记

    目录 第一章 行列式 1.1 行列式的几何意义 1.2 什么是线性相关,线性无关 1.3 行列式几何意义 1.4 行列式求和 1.5 行列式其他性质 1.6 余子式 1.7 对角线行列式 1.8 分块行列式 1.9 范德蒙德行列式 1.10 爪形行列式的计算 第二章 矩阵 2.1 初识矩阵 2.1.1 矩阵的概念 1.1.2 矩阵的运算规

    2024年04月10日
    浏览(46)
  • 考研数学笔记:线性代数中抽象矩阵性质汇总

    在考研线性代数这门课中,对抽象矩阵(矩阵 A A A 和矩阵 B B B 这样的矩阵)的考察几乎贯穿始终,涉及了很多性质、运算规律等内容,在这篇考研数学笔记中,我们汇总了几乎所有考研数学要用到的抽象矩阵的性质,详情在这里: 线性代数抽象矩阵(块矩阵)运算规则(性

    2024年02月03日
    浏览(51)
  • 【考研数学】矩阵三大关系的梳理和讨论 | 等价、相似、合同

    昨天学了矩阵的合同关系,老汤讲义里也列举了三大关系的定义和判别法,方便我们进行区分。但是光看还是难以入脑,为此,我想自己梳理一遍,顺带也复习一下线代之前的所学。 矩阵等价 —— 设 A , B pmb{A,B} A , B 为同型矩阵,若存在可逆矩阵 P , Q pmb{P,Q} P , Q ,使得 P

    2024年02月08日
    浏览(102)
  • 考研依据数学思维导图,整理出的章节知识大纲

    线性代数 | 整体写 | 第二章矩阵及其运算|整体文档|(思维导图,概念)-CSDN博客 线性代数 | 分开写 | 第二章 矩阵及其运算 | 1 线性方程组和矩阵-CSDN博客 线性代数 | 分看写 |第二章 矩阵及其运算 | 2 矩阵的运算-CSDN博客  线性代数 | 分开写 |第二章 矩阵及其运算 | 3. 逆矩阵-C

    2024年04月22日
    浏览(46)
  • 数值分析·学习 | 平方根法和追赶法matlab实现

    目录 一、前言: 二、算法描述: 三、实现代码: 1、平方根法: 2、改进的平方根法: 3、追赶法: 四、总结: 个人学习内容分享 平方根法:         如果A为n阶对称正定矩阵,则存在一个实的非奇异下三角矩阵L,使,当限定L的对角元素为正时,这种分解是唯一的。      

    2023年04月09日
    浏览(49)
  • 【2023 年第三届长三角高校数学建模竞赛】C 题 考研难度知多少 考研情况相关数据下载

    C 题 考研难度知多少 据相关媒体报道,2023 年考研可以称得上是“最难”的一年,全国研究生报考人数突破新高达到 474 万人、部分考研学生感染新冠带病赴考、保研名额增多 挤压考研录取名额等因素都导致了 2023 年考研上岸难度加大。不少同学参加完 2023 年考研直呼:今年

    2024年02月06日
    浏览(62)
  • 自制ESP8266 WIFI模块 ESP-01/阻抗匹配、射频天线高频电路学习笔记 射频模块天线匹配思路总结

    1 引言 存在决定意识。野火的指南者开发板板载ESP8266模块,一次比赛使用过ESP-01,并且这次比赛总结大会上老师说高集成度才算有技术含量,萌生了自制一个WIFI模块的想法,算是大学四年的心愿。春招在一次电话技术面试中坐了40min牢,被教训:做项目要把每个地方搞懂,否

    2024年02月16日
    浏览(47)
  • 【考研数学】高等数学第三模块——积分学 | Part II 定积分(反常积分及定积分应用)

    承接前文,梳理完定积分的定义及性质后,我们进入广义积分的学习。 通过可积的概念我们可以清楚,连续函数是可积的,同时,有有限个第一类间断点的函数也是可积的。这类积分积分区间是有限的,称为正常积分。而如果出现 积分区间无限(如上限为无穷等)或被积函

    2024年02月13日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包