【数据结构】—堆排序以及TOP-K问题究极详解(含C语言实现)

这篇具有很好参考价值的文章主要介绍了【数据结构】—堆排序以及TOP-K问题究极详解(含C语言实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【数据结构】—堆排序以及TOP-K问题究极详解(含C语言实现),数据结构与算法炼体 淬体中,算法,c语言,开发语言,c++

                                       食用指南:本文在有C基础的情况下食用更佳 

                                       🔥这就不得不推荐此专栏了:C语言

                                       ♈️今日夜电波:ルミネセンス—今泉愛夏

                                                                1:01 ━━━━━━️💟──────── 5:05
                                                                    🔄   ◀️   ⏸   ▶️    ☰ 

                                      💗关注👍点赞🙌收藏您的每一次鼓励都是对我莫大的支持😍 


目录

☸️一、前置知识:两种调整方法

       向上调整方法   

       向下调整方法 

✡️二、堆排序

      堆排序的思想

      记住一个公式!(非常重要!!!)

      代码实现

🔯三、TOP-K问题

        什么是TOP-K问题?

        基本思路

        🌰


☸️一、前置知识:两种调整方法

         向上调整方法   

        堆的向上调整方法将新插入的节点从下往上逐层比较,如果当前节点比其父节点大(或小,根据是大根堆还是小根堆),则交换这两个节点。一直向上比较,直到不需要交换为止。这样可以保证堆的性质不变。

        具体步骤如下:

        1.将新插入的节点插入到堆的最后一位。

        2.获取该节点的父节点的位置,比较该节点与其父节点的大小关系。

        .如果该节点比其父节点大(或小,根据是大根堆还是小根堆),则交换这两个节点。

        4.重复步骤2-3,直到不需要交换为止,堆的向上调整完成。

        堆的向上调整的时间复杂度为O(logn),其中n为堆的大小。

        一图让你了解~(以大堆为例)

【数据结构】—堆排序以及TOP-K问题究极详解(含C语言实现),数据结构与算法炼体 淬体中,算法,c语言,开发语言,c++

         实现如下: 

void swap(HPDataType* s1, HPDataType* s2)
{
	HPDataType temp = *s1;
	*s1 = *s2;
	*s2 = temp;
}

void Adjustup(HPDataType* a, int child)//向上调整
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		if (a[child] > a[parent])//建大堆,小堆则<
		{
			swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}

	}
}

       向下调整方法 

        堆的向下调整方法是指将某个节点的值下放至其子节点中,以维护堆的性质的过程。

        假设当前节点为 i,其左子节点为 2i+1,右子节点为 2i+2,堆的大小为 n

        则向下调整的步骤如下:

  1. 从当前节点 i 开始,将其与其左右子节点中较小或较大的节点比较,找出其中最小或最大的节点 j。

  2. 如果节点 i 小于等于(或大于等于,取决于是最小堆还是最大堆)节点 j,则说明它已经满足堆的性质,调整结束;否则,将节点 i 与节点 j 交换位置,并将当前节点 i 更新为 j。

  3. 重复执行步骤 1 和步骤 2,直到节点 i 没有子节点或已经满足堆的性质。

        一图让你了解~(以大堆为例) 

【数据结构】—堆排序以及TOP-K问题究极详解(含C语言实现),数据结构与算法炼体 淬体中,算法,c语言,开发语言,c++

         实现如下:

void swap(HPDataType* s1, HPDataType* s2)
{
	HPDataType temp = *s1;
	*s1 = *s2;
	*s2 = temp;
}

void Adjustdown(HPDataType* a, int n, int parent)//向下调整
{
	int child = parent * 2 + 1;

	while (child < n)
	{
		if (child + 1 < n && a[child + 1] > a[child])//找出两个孩子中较大的那个,此为大堆,如果要实现小堆则 改 >
		{
			++child;
		}

		if (a[child] > a[parent])//此为大堆,如果要实现小堆则 改 >
		{
			swap(&a[child], &a[parent]);

			parent = child;
			child = parent * 2 + 1;

		}
		else
		{
			break;
		}
	}
}

✡️二、堆排序

        堆排序的思想

        将待排序的序列构建成一个大根堆或小根堆,然后将堆顶元素与堆底元素交换,再重构堆,重复操作直到有序。堆排序的时间复杂度为O(nlogn),空间复杂度为O(1)。算是一种较为高效的排序方法。

         具体的实现步骤如下:

  1. 构建最大堆或最小堆。(建大堆排升序,建小堆排降序

  2. 将堆顶元素(最大或最小值)与堆底元素交换。

  3. 从堆顶开始逐级向下调整堆,保证每个节点都符合堆的性质。

  4. 重复步骤2和步骤3,直到整个序列有序。

        通常而言我们用的都是向下调整法来建堆以及排序,为什么呢?

        向下调整法具有较好的时间复杂度:与向上调整法相比,向下调整法的时间复杂度更低,因为向下调整法只需要考虑每个非叶子节点的子树是否满足堆性质,而向上调整法需要考虑每个节点到根节点是否满足堆性质,时间复杂度较高。

       记住一个公式!(非常重要!!!)

                

        这个公式是用来干什么的呢?用来找第一个有叶子节点的父节点的!

        一图让你了解~

【数据结构】—堆排序以及TOP-K问题究极详解(含C语言实现),数据结构与算法炼体 淬体中,算法,c语言,开发语言,c++

       你可能有一个疑惑,我们这样建堆的意义是什么?答案是我们要将所有节点的左子树以及右子树都建成一个我们需要的堆建大堆排升序,建小堆排降序)。这样做的意义是:让堆顶的元素在同最后一个堆的元素进行调换位置后,能够仅仅通过一次向下调整,(以大堆为例)就能让堆的最大元素排到队尾并且不打乱顺序!!!

        在理解了怎么建堆后,对于排序这件事实际上已经很简单了!

        一图让你了解~

【数据结构】—堆排序以及TOP-K问题究极详解(含C语言实现),数据结构与算法炼体 淬体中,算法,c语言,开发语言,c++

      代码实现

void HeapSort(int* a, int n)//整体时间复杂度为nlog(n)
{
	//建大堆排升序,建小堆排降序

	//用的都是向下调整法来建堆以及排序

	//这里演示升序,如果要降序则修改向下调整法中的 > 变为 < ,使得建立的为小堆,并且后面的排序也将为降序!
	//建堆
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)//注意这里的i表示为第一个有叶子结点的父节点
	{
		Adjustdown(a, n, i);
	}

	//排序
	int end = n - 1;
	while (end > 0)
	{
		swap(&a[0], &a[end]);
		Adjustdown(a, end, 0);
		--end;
	}

}

🔯三、TOP-K问题

        什么是TOP-K问题?

        TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。

        对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决。

        基本思路

        1. 用数据集合中前K个元素来建堆
                前k个最大的元素,则建小堆
                前k个最小的元素,则建大堆
        2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素

                将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K             个最小或者最大的元素。

        🌰

        在随机的10000000个数据中找出前5大的数据。(通过文件建立以及读取实现)

         该🌰的堆实现在这篇博文中:堆详解(点我跳转!!!)

         实现如下:

void PrintTopK(const char* filename, int k)
{
	// 1. 建堆--用a中前k个元素建堆
	FILE* fout = fopen(filename, "r");
	if (fout == NULL)
	{
		perror("fopen fail");
		return;
	}

	int* minheap = (int*)malloc(sizeof(int) * k);
	if (minheap == NULL)
	{
		perror("malloc fail");
		return;
	}

	for (int i = 0; i < k; i++)
	{
		fscanf(fout, "%d", &minheap[i]);
	}

	// 前k个数建小堆
	for (int i = (k-2)/2; i >=0 ; --i)
	{
		AdjustDown(minheap, k, i);
	}


	// 2. 将剩余n-k个元素依次与堆顶元素交换,不满则则替换
	int x = 0;
	while (fscanf(fout, "%d", &x) != EOF)
	{
		if (x > minheap[0])
		{
			// 替换你进堆
			minheap[0] = x;
			AdjustDown(minheap, k, 0);
		}
	}


	for (int i = 0; i < k; i++)
	{
		printf("%d ", minheap[i]);
	}
	printf("\n");

	free(minheap);
	fclose(fout);
}

// fprintf  fscanf

void CreateNDate()
{
	// 造数据
	int n = 10000000;
	srand(time(0));
	const char* file = "data.txt";
	FILE* fin = fopen(file, "w");
	if (fin == NULL)
	{
		perror("fopen error");
		return;
	}

	for (int i = 0; i < n; ++i)
	{
		int x = (rand() + i) % 10000000;
		fprintf(fin, "%d\n", x);
	}

	fclose(fin);
}

int main()
{
	//CreateNDate();
	PrintTopK("data.txt", 5);

	return 0;
}

                    感谢你耐心的看到这里ღ( ´・ᴗ・` )比心,如有哪里有错误请踢一脚作者o(╥﹏╥)o! 

                                       【数据结构】—堆排序以及TOP-K问题究极详解(含C语言实现),数据结构与算法炼体 淬体中,算法,c语言,开发语言,c++

                                                                         给个三连再走嘛~  文章来源地址https://www.toymoban.com/news/detail-716740.html

到了这里,关于【数据结构】—堆排序以及TOP-K问题究极详解(含C语言实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构】堆(Heap):堆的实现、堆排序、TOP-K问题

    目录 堆的概念及结构 ​编辑 堆的实现  实现堆的接口 堆的初始化 堆的打印 堆的销毁 获取最顶的根数据  交换 堆的插入(插入最后) 向上调整(这次用的是小堆) 堆的删除(删除根) 向下调整(这次用的小堆) 堆排序 TOP-K问题 如果有一个关键码的集合 K = { , , , …

    2024年02月05日
    浏览(52)
  • 数据结构-堆的实现及应用(堆排序和TOP-K问题)

    1.堆的知识点: 下面我们通过一张图片来更加深刻地理解堆 上面我们说过,堆的物理结构是一个数组,逻辑结构是一个完全二叉树,所以堆的实际结构类似于顺序表,只不过我们的处理方式类似于二叉树 那么我们就可以用顺序表那样的结构来表示堆了 于是我们可以写出这样的代码

    2024年02月07日
    浏览(52)
  • 【数据结构】二叉树-堆(top-k问题,堆排序,时间复杂度)

     🌈个人主页: 秦jh__https://blog.csdn.net/qinjh_?spm=1010.2135.3001.5343 🔥 系列专栏: 《数据结构》https://blog.csdn.net/qinjh_/category_12536791.html?spm=1001.2014.3001.5482 ​​ 目录 堆排序 第一种  ​编辑 第二种  TOP-K问题 建堆的时间复杂度 向下调整建堆的时间复杂度:  向上调整建堆的时间

    2024年01月21日
    浏览(55)
  • 数据结构进阶篇 之 【堆的应用】(堆排序,TOP-K问题)详细讲解

    所有人都关心我飞的高不高,只有我妈关心我翅膀硬不硬 1.1 建堆 1.2 利用堆删除思想来进行排序 –❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀-正文开始-❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀– 学习一个知识,我们起码要直

    2024年04月10日
    浏览(46)
  • 数据结构(C语言实现)——二叉树的概念及二叉树顺序结构和链式结构的实现(堆排序+TOP-K问题+链式二叉树相关操作)

    前面学习了数据结构中线性结构的几种结构,顺序表,链表,栈和队列等,今天我们来学习一种非线性的数据结构——树。由于二叉树是数据结构中的一个重点和难点,所以本文着重介绍二叉树的相关概念和性质,以及二叉树的应用。 树是一种非线性的数据结构,它是由n(

    2023年04月21日
    浏览(43)
  • 数据结构 | TOP-K问题

    TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。 就是从N个数里面找最大前K个(N远大于K) 思路一: N个数插入到堆里面,PopK次 时间复杂度是 O(N*logN) + K*logN == O(N*logN) N很大很大,假设N是100亿,K是10 100亿个整数大概需要40G左右 所以

    2024年02月05日
    浏览(41)
  • 数据结构--堆的实现-大根堆/小根堆/堆排序/堆排序稳定性证明/TOP-K

            前言          逆水行舟,不进则退!!!                目录        认识堆        堆的创建         1,向下调整的方法建立堆         2,以向下调整的方式建立小根堆         3,向上调整的方式建堆        堆的插入        堆的删除              

    2024年02月04日
    浏览(53)
  • 【数据结构】堆的应用+TOP-K问题+二叉树遍历

    欢迎来到我的: 世界 希望作者的文章对你有所帮助,有不足的地方还请指正,大家一起学习交流 ! 该篇文章写到主要是:堆排序、 TOP-K问题、二叉树链式结构的实现、二叉树的遍历等等;如果有朋友还不太了解堆以及二叉树可以翻看我的上一篇博客:堆和二叉树的概念; 最

    2024年02月07日
    浏览(51)
  • 『初阶数据结构 • C语言』⑭ - C语言实现用堆解决 TOP-K 问题

    目录 TopK函数实现 如何测试 完整源码  生活中我们经常能见到TopK问题,例如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。 所以, TopK问题即求出一组数据中前K个最大或最小的元素 ,一般情况下,数据量都比较大。 对于TopK问题,我们首先想到的可能是排序

    2024年02月16日
    浏览(41)
  • [数据结构 -- C语言] 堆实现Top-K问题,原来王者荣耀的排名是这样实现的,又涨知识了

    目录 1、什么是Top-K问题? 1.1 Top-K基本思路 2、Top-K问题逻辑分析 2.1 建堆,大小为K的小堆 2.2 将剩余的N - K 个元素依次与堆顶元素比较,大于就替换 2.3 打印堆 3、TopK实现代码 4、Top-K问题完整代码 结果展示: TopK问题的引入: 大家在玩王者荣耀的时候都遇到过xxx市第xxx某英雄

    2024年02月09日
    浏览(60)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包