Deep Learning for Natural Language Processing An Intro

这篇具有很好参考价值的文章主要介绍了Deep Learning for Natural Language Processing An Intro。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

作者:禅与计算机程序设计艺术

1.简介

深度学习的理论基础、技术框架及最新进展,以及自然语言处理领域的应用前景,对于广大从事自然语言处理研究和开发的同行来说都是一个重要的话题。近几年,随着深度学习技术的不断推陈出新的热潮,自然语言处理(NLP)也备受关注。NLP作为AI的一个主要分支之一,其背后所蕴含的巨大的复杂性和多样性使得它的研究和发展变得十分激烈,特别是在如今新兴的多模态大数据时代。因此,本文将以一个完整的视角对深度学习在NLP中的应用进行系统的介绍,并希望能够给读者提供一个较为全面的认识。

2.为什么要写这篇文章

关于深度学习在NLP中的应用,我想给出的几个原因如下:

  1. 深度学习和自然语言处理领域的交叉融合。近年来,深度学习技术逐渐成为NLP研究领域的主流方法,两者之间互相促进、相互补充。
  2. NLP具有丰富的任务需求和挑战。自然语言理解、文本生成、信息检索、机器翻译、文本摘要等诸多任务都需要进行NLP模型的训练。
  3. 人工智能和自然语言的关系。深度学习技术与自然语言产生密切联系。例如,以Google的BERT(Bidirectional Encoder Representations from Transformers)模型为代表的预训练模型以及基于神经网络语言模型的一些语音识别技术都是由于训练数据过于庞大、计算资源限制下才被发明出来的。
  4. 大量的数据、高效的算力。为了达到可靠的效果,NLP模型通常需要大量的训练数据以及高效的计算机算力支持。这一点可以说是深度学习技术的天赋。
  5. 国内外的NLP工具及平台。有关NLP的工具和平台日益增多,包括开源库、工具包、平台等。我国目前也有相关的产业集群,但国内的NLP工具还处于起步阶段,很多功能都需要自己手动实现。

综上所述&#文章来源地址https://www.toymoban.com/news/detail-716786.html

到了这里,关于Deep Learning for Natural Language Processing An Intro的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【论文阅读】A Survey on Dynamic Neural Networks for Natural Language Processing

    A Survey on Dynamic Neural Networks for Natural Language Processing 发表单位:University of California, San Diego 作者:Canwen Xu, Julian McAuley 发表会议: EACL 2023 论文地址:http://arxiv.org/abs/2202.07101 发布时间:2022.2.15(v1) 2023.2.24 (v2) 掌握主要内容 有效缩小大型Transformer模型是自然语言处理最新进展的主

    2024年02月03日
    浏览(47)
  • 深度学习笔记(kaggle课程《Intro to Deep Learning》)

    深度学习是一种机器学习方法,通过构建和训练深层神经网络来处理和理解数据。它模仿人脑神经系统的工作方式,通过多层次的神经网络结构来学习和提取数据的特征。深度学习在图像识别、语音识别、自然语言处理等领域取得了重大突破,并被广泛应用于人工智能技术中

    2024年02月13日
    浏览(50)
  • NLP/Natural Language Processing

    自然语言处理( Natural Language Processing, NLP)是计算机科学领域与人工智能领域中的一个重要方向,也就是人们常说的「自然语言处理」,就是研究如何让计算机读懂人类语言,即将人的自然语言转换为计算机可以阅读的指令。 它研究能实现人与计算机之间用自然语言进行有效通

    2024年02月03日
    浏览(53)
  • Natural Language Processing Top 10 Blogs

    作者:禅与计算机程序设计艺术 自然语言处理(NLP)作为人工智能领域的重要分支之一,拥有极高的研究价值和广泛应用前景。它可以实现对文本、图像、视频等各种形式数据的理解、分析和生成,其应用场景遍及电子商务、网络监控、医疗诊断、搜索引擎、机器翻译等多个

    2024年02月04日
    浏览(50)
  • 自然语言处理(Natural Language Processing,NLP)

    自然语言处理(Natural Language Processing,NLP)是人工智能领域的一个重要分支,旨在使计算机能够理解、处理和生成人类自然语言。NLP 的目标是让计算机能够像人类一样有效地理解和交流,从而实现更自然、更智能的人机交互。 NLP的理解概括: 文本理解和分析: NLP技术能够从文

    2024年02月14日
    浏览(52)
  • Natural Language Processing自然语言处理(NLP)

       欢迎来到此处,这里是我边学*边 整理 的有关机械学*/深度学*的相关笔记。先前我对这方面的知识不是很了解,笔记整理必然有不妥之处,请见谅并斧正。 目录: 1.Word Vectors(词向量) 2.Neural Classifiers(神经分类器) 3.神经网络和反向传播 4.Dependency Parsing 5.语言模型(LM)和循环神经

    2024年02月08日
    浏览(45)
  • 自然语言处理(Natural Language Processing,NLP)解密

    专栏集锦,大佬们可以收藏以备不时之需: Spring Cloud 专栏: Python 专栏: Redis 专栏: TensorFlow 专栏: Logback 专栏: 量子计算: 量子计算 | 解密著名量子算法Shor算法和Grover算法 AI机器学习实战: AI机器学习实战 | 使用 Python 和 scikit-learn 库进行情感分析 AI机器学习 | 基于lib

    2024年01月21日
    浏览(72)
  • EE6405-Natural Language Processing Week 1(LEC)

    NLP represents a facet of artificial intelligence focussed on examining, comprehending, andproducing human languages as they are naturally spoken and written. NLP代表了人工智能的一个方面,专注于检查、理解和生成人类自然说话和书写的语言。 NOISE REDUCTION Remove special characters,punctuation, and irrelevantinformation to cl

    2024年03月26日
    浏览(65)
  • 自然语言处理技术(Natural Language Processing)知识点

    对自然语言处理相关的知识点进行总结。 自然语言处理(NLP)是一种人工智能技术,用于处理和理解自然语言文本。NLP 的目标是使计算机能够像人类一样理解、处理或生成自然语言,以便能够完成各种任务,例如文本分类、情感分析、机器翻译、问答系统等。 NLP 的实现通常

    2024年04月25日
    浏览(48)
  • Leveraging Natural Language Processing to Generate Pers

    作者:禅与计算机程序设计艺术 现代医疗卫生领域面临着巨大的需求量,而给患者提供正确、专业的治疗建议成为了现实存在的难题。如何根据患者自身情况,通过对病人的病情描述进行分析,及时为其提供准确且有效的治疗建议,是一个至关重要的问题。为了实现这一目标

    2024年02月09日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包