【wespeaker】模型ECAPA_TDNN介绍

这篇具有很好参考价值的文章主要介绍了【wespeaker】模型ECAPA_TDNN介绍。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本次主要介绍开源项目wespeaker模型介绍

1. 模型超参数

model_args:
feat_dim: 80
embed_dim: 192
pooling_func: “ASTP”
projection_args:
project_type: “softmax” # add_margin, arc_margin, sphere, softmax
scale: 32.0
easy_margin: False

2. 模型结构

2.1 Layer1: input层

x:(B,F,T) F=80
将原始80维fbank特征进行映射;
x->conv->relu->bn->(B,F’,T) F’=512

【wespeaker】模型ECAPA_TDNN介绍,pytorch
进入下面的layer2-4

2.2 Layer2-4:核心空洞卷积层

Layer2和Layer3、Layer4相似,只有两个超参数不同。下面介绍Layer2的结构。

整体结构

x: (B,F,T) F=512
x -> block1~4 -> new_x
return x + new_x

block1

x:(B,F,T) F=512
x->conv->relu->bn->(B,F,T)

block2

x: (B,F,T) F=512
x分为8块->(B,F’,T) F’=64

x1~x7执行:
conv-relu->bn->(B,F’,T)
x8不变

x1~x8合并->(B,F,T) F=512

block3

x:(B,F,T) F=512
x->conv->relu->bn->(B,F,T)

block4

SE block,对F维进行缩放
x:(B,F,T) F=512
x对最后一个维度求mean->(B,F)
(B,F) -> Linear1->Relu->Linear2->(B,F)->sigmoid->unsqueeze->(B,F,1) 得到scale

x * scale ->(B,F,T)

【wespeaker】模型ECAPA_TDNN介绍,pytorch
上图中标红的部分分别为layer2/3/4的参数,其他均相同

2.3 pool:池化层

2.3.1前处理

out2、out3、out4按照dim=1进行拼接->(B,3*F,T) (F=512)

按照下图的卷积参数进行卷积->(B,3F,T)
ReLU->(B,3
F,T)
【wespeaker】模型ECAPA_TDNN介绍,pytorch
然后进行下面的pool

2.3.2Attentive statistics pooling

x : (B,F,T) F=1536
对x在-1维度求mean,扩展为x维度;
对x在-1维度求std,扩展为x维度;
x拼接mean、std为(B,3*F,T) new_x

new_x->下图中的第一个卷积->tanh->下图中第二个卷积->(B,F,T) ->对最后一维度求softmax得到attention
attention * x ,最后一维度sum,得到mean;(B,F)
attention * x_2, 最后一维度sum - mean_2,得到std;(B,F)
拼接mean std->(B,2*F) 返回(B,3072)
【wespeaker】模型ECAPA_TDNN介绍,pytorch

2.3.3后处理(embed层)

x: (B,F) F=3072
x->bn-> (B,F) ->embed(下图的Linear)->(B,F’) F’=192

【wespeaker】模型ECAPA_TDNN介绍,pytorch

2.4 projection:映射层

projection_type: softmax(else分支)

根据具体的任务,将embed层映射为实际的分类;
x:(B,F) F=192
x->bn->relu->linear->(B,F’) F’=5

【wespeaker】模型ECAPA_TDNN介绍,pytorch

projection_type:arc_margin

scale: 32.0
easy_margin: False
in_feature: 192
out_feature: 5
margin=0.0文章来源地址https://www.toymoban.com/news/detail-716925.html

到了这里,关于【wespeaker】模型ECAPA_TDNN介绍的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • pytorch 测量模型运行时间,GPU时间和CPU时间,model.eval()介绍

    time.time() time.perf_counter() time.process_time() time.time() 和time.perf_counter() 包括sleep()time 可以用作一般的时间测量,time.perf_counter()精度更高一些 time.process_time()当前进程的系统和用户CPU时间总和的值 测试代码: 测试结果: 更详细解释参考 Python3.7中time模块的time()、perf_counter()和proce

    2024年02月06日
    浏览(46)
  • 深入理解TDNN(Time Delay Neural Network)——兼谈x-vector网络结构

    TDNN(Time Delay Neural Network,时延神经网络)是用于处理序列数据的,比如:一段语音、一段文本 将TDNN和统计池化(Statistics Pooling)结合起来,正如x-vector的网络结构,可以处理任意长度的序列 TDNN出自Phoneme recognition using time-delay neural networks x-vector出自X-Vectors: Robust DNN Embeddin

    2023年04月09日
    浏览(35)
  • 人工智能(pytorch)搭建模型17-pytorch搭建ReitnNet模型,加载数据进行模型训练与预测

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型17-pytorch搭建ReitnNet模型,加载数据进行模型训练与预测,RetinaNet 是一种用于目标检测任务的深度学习模型,旨在解决目标检测中存在的困难样本和不平衡类别问题。它是基于单阶段检测器的一种改进方法,通

    2024年02月15日
    浏览(96)
  • 人工智能(pytorch)搭建模型12-pytorch搭建BiGRU模型,利用正态分布数据训练该模型

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型12-pytorch搭建BiGRU模型,利用正态分布数据训练该模型。本文将介绍一种基于PyTorch的BiGRU模型应用项目。我们将首先解释BiGRU模型的原理,然后使用PyTorch搭建模型,并提供模型代码和数据样例。接下来,我们将

    2024年02月09日
    浏览(68)
  • 人工智能(pytorch)搭建模型9-pytorch搭建一个ELMo模型,实现训练过程

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型9-pytorch搭建一个ELMo模型,实现训练过程,本文将介绍如何使用PyTorch搭建ELMo模型,包括ELMo模型的原理、数据样例、模型训练、损失值和准确率的打印以及预测。文章将提供完整的代码实现。 ELMo模型简介 数据

    2024年02月07日
    浏览(67)
  • pytorch模型转caffe模型

    记录一个好用的pytorch模型转caffe模型的方法,源码链接如下: https://github.com/xxradon/PytorchToCaffe 把代码clone下来后,进入example目录便可查看示例, 如果想实现把pytorch的flatten转换至caffe中,需修改脚本: pytorch_to_caffe.py 。修改后的脚本内容如下,

    2024年01月23日
    浏览(33)
  • Pytorch 最全入门介绍,Pytorch入门看这一篇就够了

    本文通过详细且实践性的方式介绍了 PyTorch 的使用,包括环境安装、基础知识、张量操作、自动求导机制、神经网络创建、数据处理、模型训练、测试以及模型的保存和加载。 在这一部分,我们将会对Pytorch做一个简单的介绍,包括它的历史、优点以及使用场景等。 PyTorch是一

    2024年02月15日
    浏览(50)
  • 人工智能(pytorch)搭建模型14-pytorch搭建Siamese Network模型(孪生网络),实现模型的训练与预测

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型14-pytorch搭建Siamese Network模型(孪生网络),实现模型的训练与预测。孪生网络是一种用于度量学习(Metric Learning)和比较学习(Comparison Learning)的深度神经网络模型。它主要用于学习将两个输入样本映射到一个

    2024年02月11日
    浏览(143)
  • 人工智能(Pytorch)搭建模型6-使用Pytorch搭建卷积神经网络ResNet模型

    大家好,我是微学AI,今天给大家介绍一下人工智能(Pytorch)搭建模型6-使用Pytorch搭建卷积神经网络ResNet模型,在本文中,我们将学习如何使用PyTorch搭建卷积神经网络ResNet模型,并在生成的假数据上进行训练和测试。本文将涵盖这些内容:ResNet模型简介、ResNet模型结构、生成假

    2024年02月06日
    浏览(78)
  • 【深入了解pytorch】PyTorch训练和评估模型

    在机器学习和深度学习领域,PyTorch是一个非常受欢迎的深度学习框架。它提供了灵活且强大的工具,使得训练和评估模型变得更加容易。本文将介绍如何使用PyTorch来准备数据集、定义训练循环、选择优化算法,并展示如何评估模型性能。 在开始训练模型之前,我们首先需要

    2024年02月16日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包