不定积分-换元法

这篇具有很好参考价值的文章主要介绍了不定积分-换元法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

换元法最重要的作用是打开局面,在做积分题时,只要我们选择恰当的换元,就可以将复杂的积分变得非常简洁,尤其是在处理带有根式的积分时,常常会使用换元法。


两类换元法:

(1)整体换元

(2)三角换元

(1)整体换元

不定积分换元法,数学,线性代数,算法

 例题(1)

不定积分换元法,数学,线性代数,算法

 使用整体换元。

不定积分换元法,数学,线性代数,算法

 注意✨ (红线)本题换元之后,不需要将dx解出来,而应该直接分部积分。

例题(2)

不定积分换元法,数学,线性代数,算法

 文章来源地址https://www.toymoban.com/news/detail-716965.html

例题(3)

不定积分换元法,数学,线性代数,算法

解法二 🌈:之前在三角函数不定积分中提到过,我们宁愿分子很多项,也不愿分母很多项,因为分子很多项可以拆开。所以这个题可以进行分子有理化。

不定积分换元法,数学,线性代数,算法

 例题(4)

不定积分换元法,数学,线性代数,算法

解法一: 遇到这个题目,可以直接从加号处拆开,然后分别计算。

解法二🌈:但是效率可能比较低。所以可以用分子有理化的方法打开局面。

不定积分换元法,数学,线性代数,算法

 

 

 例题(5)

不定积分换元法,数学,线性代数,算法

 注意😵‍💫😵‍💫😶‍🌫️!!求导!(第一次错了!)

不定积分换元法,数学,线性代数,算法

 (2)三角换元

若被积函数中出现了“√二次函数”,则一般采用三角换元,具体分为一下两种。

(1)若括号内没有一次项,只有常数项和平方项,则直接换元。

注意!😝😝不一定非要出现根号才三角换元。出现1/(1+x²)²的积分,可用x=tant,再用二倍角处理!

(2)若根号内含有一次函数,则需要对根号内的二次函数配方,消去一次项后,便转化为了上买的👆情况,然后换元即可!

例题(1)

不定积分换元法,数学,线性代数,算法

 例题(2)

不定积分换元法,数学,线性代数,算法

例题(3)

不定积分换元法,数学,线性代数,算法

 最后化简:

不定积分换元法,数学,线性代数,算法

 

 

到了这里,关于不定积分-换元法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 从二重积分换元法到概率论卷积公式

    二重积分换元公式 (第七版同济书下册P152) 设 f ( x , y ) f(x, y) f ( x , y ) 在 x O y x O y x O y 平面上的闭区域 D D D 上连续,若变换 T : x = x ( u , v ) ,   y = y ( u , v ) T: x=x(u, v), y=y(u, v) T : x = x ( u , v ) ,   y = y ( u , v ) 将 u O v u O v u O v 平面上的闭区域 D ′ D^{prime} D ′ 变为 x O y x O y

    2024年02月04日
    浏览(35)
  • 高数【积分-不定积分】--猴博士爱讲课

    ⑧ ∫ t a n x d x = ∫ s i n x c o s x d x = ∫ 1 c o s x d ( − c o s x ) = − l n ∣ c o s x ∣ + C ⑨ ∫ c o t x d x = ∫ 1 t a n x d x = ∫ c o s x s i n x d x = ∫ 1 s i n x d ( s i n x ) = l n ∣ s i n x ∣ + C ( t a n x ) ‘ = s e c 2 x , t a n 2 x + 1 = s e c 2 x [ 十七 ] ∫ d x a 2 + x 2 = ∫ d x a 2 ( 1 + ( x / a ) ) 2 = ∫ d (

    2024年01月25日
    浏览(35)
  • Mathematica求解不定积分与定积分

    注意要切换到英文输入法下 2 x 要输入成 2 ∗ x 或者 2   x (中间有个空格) 2x要输入成2*x或者2 x(中间有个空格) 2 x 要输入成 2 ∗ x 或者 2   x (中间有个空格) 无穷大——esc+inf+esc 运行 —— SHIFT+ENTER 幂运算 ____ CTRL+6 根号 ——— CTRL+2 分式 ——— CTRL+/ 对数—— Log[3]

    2024年02月06日
    浏览(45)
  • 3.15每日一题(分部积分求不定积分)

    注:在分部积分后,求不定积分时         (1)可以加项减项拆的方法求(常规方法)          (2)可以上下同乘e的-t次幂,方便求

    2024年02月06日
    浏览(65)
  • 不定积分的概念和性质

    目录 原函数 不定积分 不定积分的几何意义 原函数的存在定理 不定积分的性质   不定积分是微积分的一个关键部分,它涉及到一个函数的不定积分的计算。不定积分可以理解为求一个函数的原函数,也被称为反导数。原函数是一个函数,使得该函数的导数等于被积函数。不

    2024年02月08日
    浏览(38)
  • 三角函数不定积分(三)

    上一节中三角函数求不定积分 缩分母技巧,主要总结了求三角函数不定积分的缩分母技巧,今天主要总结三角函数中的凑微分技巧。 (总结内容来自于哔哩哔哩up主考研竞赛凯哥) 一、若R(sinx,-cosx)=-R(sinx,cosx),则想办法将cosx凑到d后面,形成dsinx,后面则将 sinx看作整

    2024年02月14日
    浏览(37)
  • 4.1 不定积分的概念与性质

    学习不定积分,我会采取以下几个步骤: 1.学习基本的积分表:首先,我会学习基本的积分公式,例如幂函数、指数函数、三角函数、反三角函数等的积分公式。这些公式是不定积分计算的基础,掌握它们是十分重要的。 2.理解积分的定义和性质:其次,我会学习积分的定义

    2023年04月14日
    浏览(38)
  • 武忠祥老师每日一题||不定积分基础训练(六)

    解法一: 求 出 f ( x ) , 进 而 对 f ( x ) 进 行 积 分 。 求出f(x),进而对f(x)进行积分。 求 出 f ( x ) , 进 而 对 f ( x ) 进 行 积 分 。 令 ln ⁡ x = t , 原 式 f ( t ) = ln ⁡ ( 1 + e t ) e t 令ln x=t,原式f(t)=frac{ln (1+e^t)}{e^t} 令 ln x = t , 原 式 f ( t ) = e t ln ( 1 + e t ) ​ 则 ∫ f ( x )   d x = ∫

    2024年02月06日
    浏览(45)
  • 人工智能中数学基础:线性代数,解析几何和微积分

    在人工智能领域,线性代数、解析几何和微积分是最基础的数学知识。这些数学知识不仅在人工智能领域中被广泛应用,也是其他领域的重要基础。本文将介绍人工智能中的线性代数、解析几何和微积分的基础知识和应用。

    2024年02月16日
    浏览(52)
  • 线性代数 --- LU分解(Gauss消元法的矩阵表示)

                     首先, LU分解实际上就是用矩阵的形式来记录的高斯消元的过程 。其中,对矩阵A进行高斯消元后的结果为矩阵U,是LU分解后的两个三角矩阵中其中之一。U是一个上三角矩阵,U就是上三角矩阵upper triangle的首字母的大写。         高斯消元的每一步都

    2024年02月02日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包