2023年MathorCup高校数学建模挑战赛大数据挑战赛赛题浅析

这篇具有很好参考价值的文章主要介绍了2023年MathorCup高校数学建模挑战赛大数据挑战赛赛题浅析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

比赛时长为期7天的妈杯大数据挑战赛如期开赛,为了帮助大家更好的选题,首先给大家带来赛题浅析,为了方便大家更好的选题。

赛道 A:基于计算机视觉的坑洼道路检测和识别

A题,图像处理类题目。这种题目的难度数模独一档,有图像处理经验的可以尝试。正常并不推荐直接选择A题。本次比赛,本平台也会主要侧重B题的助攻。

赛道B:电商零售商家需求预测及库存优化问题

由于竞赛赛题分初赛、复赛。因此本次比赛的B题仅仅涉及需求预测部分,因此关于库存优化,大家可以都不用进行考虑。因此,对于B题而言,该赛题仅仅属于预测范畴。下面我们简要的分析B题,

首先,就是数据预处理问题。对于这么大的数据集,异常值缺失值问题一定是存在的。例如对于需求量最大的这几个数据。上万的库存量我们应该如何处理呢?这是否是异常值,大家都需要进行考虑。

2023年MathorCup高校数学建模挑战赛大数据挑战赛赛题浅析,数学建模,大数据

还有一种情况就是在进阶版课程里面一直给大家强调的逻辑异常,对于这次题目给出的数据,会不会存在逻辑异常呢?例如,一个电脑、办公的商家售卖了宠物 ,这种情况算不算异常值么?也需要大家进行讨论处理。

之后的问题一二三,则是预测模型的。根据题目不不同的要求,引入不同的自变量进行约束即可。例如。对于问题一而言,即需要我们根据附件一-附件四的数据对各商家在各仓库的商品2023-05-16 至 2023-05-30 的需求量进行预测。并进行相似度分析,这里的相似度简单来讲,我认为可以使用相关性分析里面的最简单的person进行分析即可。选择相似度高的指标,作为问题二预测模型的指标进行预测即可。

问题三,即需要我们引入去年双十一期间的需求量数据进行分析关联性等,建立对应的预测模型即可。

对于预测模型的选取,大家可以参考我之前讲过的第七八课时预测课时进行选择即可。

2023年MathorCup高校数学建模挑战赛大数据挑战赛赛题浅析,数学建模,大数据文章来源地址https://www.toymoban.com/news/detail-717472.html

到了这里,关于2023年MathorCup高校数学建模挑战赛大数据挑战赛赛题浅析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包