Orange:一个基于 Python 的数据挖掘可视化平台

这篇具有很好参考价值的文章主要介绍了Orange:一个基于 Python 的数据挖掘可视化平台。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

orange 数据挖掘,python,数据挖掘,开发语言

本篇介绍一个适合初学者入门的机器学习工具。

Orange 简介

Orange 是一个开源的数据挖掘和机器学习软件。Orange 基于 Python 和 C/C++ 开发,提供了一系列的数据探索、可视化、预处理以及建模组件。

Orange 拥有漂亮直观的交互式用户界面,非常适合新手进行探索性数据分析和可视化展示;同时高级用户也可以将其作为 Python 的一个编程模块进行数据操作和组件开发。

Orange 由卢布尔雅那大学于 1996 年开发,从 3.0 版本开始使用 Python 代码库进行科学计算,例如 numpy、scipy 以及 scikit-learn;前端的图形用户界面使用跨平台的 Qt 框架。Orange 支持 Windows、macOS 以及 Linux 平台。

Orange 安装

首先,打开 Orange 官方下载页面Orange Data Mining - Download

orange 数据挖掘,python,数据挖掘,开发语言

下载页面提供了几种安装方式:

Miniconda,直接点击“Download”按钮,下载 Orange3-Miniconda-x86_64.exe 文件后双击运行。

Anaconda,如果系统已经 Anaconda 发行版,执行以下两个命令:

conda config --add channels conda-forge
conda install orange3

orange 数据挖掘,python,数据挖掘,开发语言

Python Package Index,执行以下命令:

pip install orange3

安装完成后,在命令行输入以下命令可以启动 Orange 图形界面:

orange-canvas
# 或者
python -m Orange.canvas

启动之后显示以下欢迎界面。

orange 数据挖掘,python,数据挖掘,开发语言

欢迎界面提供了新建、打开工作流(workflow)的快捷方式以及各种教程、示例和使用文档,关闭该界面就进入了 Orange 主界面。


示例教程

打开 Orange 主界面,左侧显示了默认安装时提供的许多机器学习、预处理以及可视化的算法,这些功能被划分为 5 个组件集(数据、可视化、模型、评估以及无监督算法)。

orange 数据挖掘,python,数据挖掘,开发语言

其中的组件包括:

  • 数据(Data):包含数据输入、数据保存、数据过滤、抽样、插补、特征操作以及特征选择等组件,同时还支持嵌入 Python 脚本。
  • 可视化(Visualize):包含通用可视化(箱形图、直方图、散点图)和多变量可视化(马赛克图、筛分曲线图)组件。
  • 模型(Model):包含一组用于分类和回归的有监督机器学习算法组件。
  • 评估(Evaluate):交叉验证、抽样程序、可靠性评估以及预测方法评估。
  • 无监督算法(Unsupervised):用于聚类(k-means、层次聚类)和数据降维(多维尺度变换、主成分分析、相关分析)的无监督学习算法。

另外,还可以通过插件(add-ons)的方式为 Orange 增加其他的功能(生物信息学、数据融合与文本挖掘。添加的方法是点击“Options”菜单下的“Add-ons”按钮,打开插件管理器。

orange 数据挖掘,python,数据挖掘,开发语言

然后勾选所需的插件,点击“OK”按钮进行安装;安装插件后有可能需要重启 Orange 才能在左侧出现。

Orange 主界面的右侧是一个工作区(canvas),用于放置各种组件并构成一个数据分析的工作流。我们可以组合左侧的组件实现读取数据、显示数据表、选择特征、训练预测器、比较学习算法以及交互式可视化等功能。为了方便初学者,Orange 提供了许多实用的工作流示例。

点击“Help”菜单下的“Example Workflows”按钮,打开工作流示例界面。

orange 数据挖掘,python,数据挖掘,开发语言

我们选择“Classification Tree”,这是一个用于分类的决策树示例。

orange 数据挖掘,python,数据挖掘,开发语言

我们可以通过示例中的说明了解每个组件的作用和工作流程,其中的组件包括:

  1. 打开数据文件的 File 组件,用于打开包含鸢尾花(Iris)数据集的文件,这是一个经典的数据挖掘数据集;
  2. 用于分类的决策树组件(Classification Tree),这是一个决策树算法;
  3. 分类树可视化组件(Tree Viewer),用于显示分类树的结果;
  4. 散点图组件(Scatter Plot),显示选定数据的散点图;
  5. 箱形图组件(Box Plot),显示选定数据的箱型图。
  6. 组件之间的连线代表了数据流的方向。

通过这些组件的简单组合,构建了一个交互式分类树浏览器。我们可以点击这些组件,对其进行设置和调整,例如文件组件:

orange 数据挖掘,python,数据挖掘,开发语言

文件组件可以加载数据文件或者在线 URL 资源,并且对每个数据属性的类型、角色等进行设置。分类树组件可以对决策算法进行设置:

orange 数据挖掘,python,数据挖掘,开发语言

 分类树可视化组件可以提供直观的分类结果:

orange 数据挖掘,python,数据挖掘,开发语言

散点图组件可以根据分类树可视化组件中选择的节点数据显示相应的散点图,实现同步刷新:

orange 数据挖掘,python,数据挖掘,开发语言

我们也可以从 Orange 官方网站下载更多的示例。Orange Data Mining - Workflows

对于初学者而言,只需要在 Orange 图形界面中通过拖拽加点击的方式就可以实现常见的数据分析、探索、可视化以及数据挖掘任务;对于高级用户,可以通过开发自定义的组件(Widget)实现扩展的功能,或者在 Python 中利用 Orange 代码库编写数据挖掘脚本程序。相关内容可以参考 Orange 官方文档。

参考:

Orange:一个基于 Python 的数据挖掘和机器学习平台_orange python_不剪发的Tony老师的博客-CSDN博客

入门教程:https://blog.csdn.net/weixin_39461079/category_12101011.html文章来源地址https://www.toymoban.com/news/detail-717518.html

到了这里,关于Orange:一个基于 Python 的数据挖掘可视化平台的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 武汉市房价数据挖掘与可视化分析(Python)

    本文使用Python Matplotlib、Pyecharts、Seaborn、Plotl,以及百度提供的绘制可视化地图接口BMap等工具,对武汉市14个区的房价数据进行可视化分析,绘制了房价分布热力地图、房价分布旭日图等众多图表,数据来源为使用Python Scrapy 和 Selenium 从链家、贝壳网上爬取的房价及其相关数

    2023年04月17日
    浏览(41)
  • 【数据挖掘与人工智能可视化分析】可视化分析:如何通过可视化技术进行数据挖掘和发现

    作者:禅与计算机程序设计艺术 数据挖掘(Data Mining)和人工智能(Artificial Intelligence,AI)已经成为当今社会热点话题。这两者之间的结合也带来了很多挑战。作为数据科学家、机器学习工程师、深度学习研究员等,掌握了数据的获取、清洗、处理、建模、应用这些技术的前提下,

    2024年02月07日
    浏览(77)
  • Python数据挖掘:入门、进阶与实用案例分析——基于非侵入式负荷检测与分解的电力数据挖掘

    本案例将根据已收集到的电力数据,深度挖掘各电力设备的电流、电压和功率等情况,分析各电力设备的实际用电量,进而为电力公司制定电能能源策略提供一定的参考依据。更多详细内容请参考《Python数据挖掘:入门进阶与实用案例分析》一书。 为了更好地监测用电设备的

    2024年02月08日
    浏览(49)
  • 【数据挖掘】如何为可视化准备数据

            想要开始您的下一个数据可视化项目吗?首先与数据清理友好。数据清理是任何数据管道中的重要步骤,可将原始的“脏”数据输入转换为更可靠、相关和简洁的数据输入。诸如Tableau Prep或Alteryx之类的数据准备工具就是为此目的而创建的,但是当您可以使用Pyth

    2024年02月17日
    浏览(44)
  • 为何开展数据清洗、特征工程和数据可视化、数据挖掘与建模?

    1.2为何开展数据清洗、特征工程和数据可视化、数据挖掘与建模 视频为 《Python数据科学应用从入门到精通》张甜 杨维忠 清华大学出版社一书的随书赠送视频讲解1.2节内容 。本书已正式出版上市,当当、京东、淘宝等平台热销中,搜索书名即可。内容涵盖数据科学应用的全

    2024年02月04日
    浏览(55)
  • 【Python】基于非侵入式负荷检测与分解的电力数据挖掘

    本案例将根据已收集到的电力数据,深度挖掘各电力设备的电流、电压和功率等情况,分析各电力设备的实际用电量,进而为电力公司制定电能能源策略提供一定的参考依据。更多详细内容请参考《Python数据挖掘:入门进阶与实用案例分析》一书。 为了更好地监测用电设备的

    2024年02月08日
    浏览(49)
  • HNU-数据挖掘-实验2-数据降维与可视化

    计科210X 甘晴void 202108010XXX 数据降维是指将高维数据映射到低维空间的过程。在现实生活中,很多数据集都是高维的,每个样本包含着大量特征。然而,高维数据不仅对计算资源要求较高,而且容易造成“维数灾难”,即在高维空间中,数据样本的稀疏性和分布规律难以理解

    2024年01月22日
    浏览(56)
  • 【数据挖掘torch】 基于LSTM电力系统负荷预测分析(Python代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 1.1 地区负荷的中短期预测分析 1.2 行业负荷的中期预测分

    2024年02月14日
    浏览(65)
  • 数据挖掘01-相关性分析及可视化【Pearson, Spearman, Kendall】

    ​ 有这么一句话在业界广泛流传: 数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。 ​ 因此,数据挖掘在人工智能和大数据的时代下显得尤为重要。本人在工作中也会经常为数据挖掘方面的任务头疼,所以想将所见、所学、所整理的数据挖掘学习资

    2024年02月02日
    浏览(43)
  • GPT-4科研实践:数据可视化、统计分析、编程、机器学习数据挖掘、数据预处理、代码优化、科研方法论

    查看原文GPT4科研实践技术与AI绘图 GPT对于每个科研人员已经成为不可或缺的辅助工具,不同的研究领域和项目具有不同的需求。 例如在科研编程、绘图领域 : 1、编程建议和示例代码:  无论你使用的编程语言是Python、R、MATLAB还是其他语言,都可以为你提供相关的代码示例。

    2024年02月07日
    浏览(62)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包