PyTorch入门学习(六):神经网络的基本骨架使用

这篇具有很好参考价值的文章主要介绍了PyTorch入门学习(六):神经网络的基本骨架使用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一、引言

二、创建神经网络骨架

三、执行前向传播


一、引言

神经网络是深度学习的基础。在PyTorch中,可以使用nn.Module类创建自定义神经网络模型。本文将演示如何创建一个简单的神经网络骨架并执行前向传播操作。

二、创建神经网络骨架

首先,导入PyTorch库并创建一个继承自nn.Module的自定义神经网络模型:

import torch
from torch import nn

class Tudui(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        output = input + 1
        return output

tudui = Tudui()
  • 导入PyTorch库以便使用深度学习工具。
  • 创建一个名为Tudui的自定义神经网络模型,它继承自nn.Module
  • __init__方法中,调用父类的构造函数,初始化神经网络。
  • forward方法定义神经网络的前向传播过程,其中对输入进行了简单的操作,将输入加1。

三、执行前向传播

接下来,执行前向传播操作,将输入数据传递给神经网络模型:

x = torch.tensor(1.0)
output = tudui(x)
print(output)
  • 创建一个名为x的张量,其值为1.0,作为输入数据。
  • 通过调用Tudui模型的实例tudui并传递输入数据x,执行前向传播操作。
  • 最后,打印前向传播的输出结果。

完整代码如下:

import torch
from torch import nn

# 创建一个自定义神经网络模型 Tudui
class Tudui(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        # 前向传播函数,将输入加1并返回
        output = input + 1
        return output

# 创建 Tudui 类的实例 tudui
tudui = Tudui()

# 创建一个张量 x,值为1.0,作为输入数据
x = torch.tensor(1.0)

# 将输入 x 传递给 tudui 模型,执行前向传播
output = tudui(x)

# 打印前向传播的输出结果
print(output)

参考资料:

视频教程:PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】文章来源地址https://www.toymoban.com/news/detail-717544.html

到了这里,关于PyTorch入门学习(六):神经网络的基本骨架使用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Pytorch入门学习——快速搭建神经网络、优化器、梯度计算

    我的代码可以在我的Github找到 GIthub地址 https://github.com/QinghongShao-sqh/Pytorch_Study 因为最近有同学问我如何Nerf入门,这里就简单给出一些我的建议: (1)基本的pytorch,机器学习,深度学习知识,本文介绍的pytorch知识掌握也差不多. 机器学习、深度学习零基础的话B站​吴恩达、

    2024年02月14日
    浏览(43)
  • PyTorch入门学习(九):神经网络-最大池化使用

    目录 一、数据准备 二、创建神经网络模型 三、可视化最大池化效果 一、数据准备 首先,需要准备一个数据集来演示最大池化层的应用。在本例中,使用了CIFAR-10数据集,这是一个包含10个不同类别图像的数据集,用于分类任务。我们使用PyTorch的 torchvision 库来加载CIFAR-10数据

    2024年02月07日
    浏览(34)
  • PyTorch入门学习(十一):神经网络-线性层及其他层介绍

    目录 一、简介 二、PyTorch 中的线性层 三、示例:使用线性层构建神经网络 四、常见的其他层 一、简介 神经网络是由多个层组成的,每一层都包含了一组权重和一个激活函数。每层的作用是将输入数据进行变换,从而最终生成输出。线性层是神经网络中的基本层之一,它执

    2024年02月05日
    浏览(41)
  • PyTorch入门学习(十二):神经网络-搭建小实战和Sequential的使用

    目录 一、介绍 二、先决条件 三、代码解释 一、介绍 在深度学习领域,构建复杂的神经网络模型可能是一项艰巨的任务,尤其是当您有许多层和操作需要组织时。幸运的是,PyTorch提供了一个方便的工具,称为Sequential API,它简化了神经网络架构的构建过程。在本文中,将探

    2024年02月05日
    浏览(44)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(十七):卷积神经网络入门

    我们在前面学习的多层感知机中,已经认识了全链接层,缺点很明显,在稍微大点的网络模型中,参数成指数级别增长。参数量很快就达到数十亿,这样的量级几乎无法计算。为此科学家们想出一个减少参数的方法:卷积。 从全链接层到卷积的推论,使用如下两个原则: 平

    2024年02月13日
    浏览(61)
  • 深度学习入门——卷积神经网络CNN基本原理+实战

    ​ 卷积神经网络(Convolutional Neural Network,CNN)是深度学习技术中最基础的网络结构,模拟人脑工作,具备强大的特征学习能力。CNN结构主要由两部分组成:特征提取部分和分类部分color{blue}{特征提取部分和分类部分}特征提取部分和分类部分。特征提取部分网络将执行一系列

    2024年01月21日
    浏览(49)
  • pytorch神经网络入门代码

    以下代码测试正确率为:99.37%

    2024年02月20日
    浏览(42)
  • [pytorch入门] 6. 神经网络

    torch.nn: Containers:基本骨架 Convolution Layers: 卷积层 Pooling layers:池化层 Non-linear Activations (weighted sum, nonlinearity):非线性激活 Normalization Layers:正则化层 containers相对重要的一个类,主要给神经网络定义了一些骨架、一些结构,后面那些类都是要向骨架中填充的东西 里面有

    2024年01月25日
    浏览(43)
  • 《Pytorch新手入门》第二节-动手搭建神经网络

    参考《深度学习框架PyTorch:入门与实践_陈云(著)》 代码链接:https://github.com/chenyuntc/pytorch-book 神经网络是机器学习中的一种模型,是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互

    2024年02月05日
    浏览(45)
  • 卷积神经网络——上篇【深度学习】【PyTorch】

    5.1.1、理论部分 全连接层后,卷积层出现的意义? 一个足够充分的照片数据集,输入,全连接层参数,GPU成本,训练时间是巨大的。 (convolutional neural networks,CNN)是机器学习利用自然图像中一些已知结构的创造性方法,需要更少的参数,在处理图像和其他类型的结构化数据

    2024年02月12日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包