Kafka入门05——基础知识

这篇具有很好参考价值的文章主要介绍了Kafka入门05——基础知识。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

副本数据同步原理

HW和LEO的更新流程

第一种情况

第二种情况

数据丢失的情况

解决方案

Leader副本的选举过程

日志清除策略和压缩策略

日志清除策略

日志压缩策略

Kafka存储手段

零拷贝(Zero-Copy)

页缓存(Page Cache)

Kafka的消息可靠性


Kafka入门05——基础知识,消息队列,kafka,分布式

在ISR中,只要有一个Follower存活就能确保Commit的数据不会丢失。那如果分区所有副本都失效了,会发生什么?

无法确保Commit数据不丢失,会出现可用性和一致性问题。需要采取折中方案:

  1. 等待ISR中第一个“活”过来的副本,选举它为Leader。

  2. 选择第一个“活”过来的副本,但它不一定是Leader。

第一种方案的问题就是不可用的时间会相对较长。第二种方案的问题是不保证包含所有Commit的消息。所以往往采取的是第一种方案。

副本数据同步原理

Kafka 的数据副本同步原理是确保消息的高可用性和数据冗余的关键机制。在 Kafka 中,每个分区通常都有多个副本,其中一个是领导副本(Leader Replication)负责读写操作,其他是追随者副本(Follower Replication)用于数据备份和容错。

Kafka入门05——基础知识,消息队列,kafka,分布式

以其中一个分区的副本同步通信举例,当producer将消息发布到某个partition时:

Kafka入门05——基础知识,消息队列,kafka,分布式

  1. 通过zookeeper找到分区的leader,将消息发送给leader(无论多少个副本,生产者只将消息发送给leader)。

  2. leader将消息写入本地log。每个follower从leader拉取数据,follower存储顺序与leader一致。

  3. follower在收到消息并写入自身log后,向leader发送Ack。

  4. leader收到ISR中所有的副本的Ack后,消息被认为commit成功,leader更新HW并向生产者发送Ack。

HW(High Water): 水位线。代表的是小于等于HW值的所有消息是已备份的。

LEO(Log End Offset):日志末端位移。代表的是下一条消息的位移,如LEO=10,表示已有[0,9]共10条消息。

HW和LEO的更新流程

初始状态的HW和LEO都是0。Leader中存放了一个表示follower的LEO值 remote leo也为0。

当前生产者没有发送消息,但是Follower会不断地向leader发送fetch请求,因为leader没有接收到消息,follower的fetch会阻塞。参数配置replicas.fetch.wait.,ax.ms决定阻塞时间。时间内,生产者发送消息给leader的话,fetch请求会被唤醒,让leader继续处理。

Kafka入门05——基础知识,消息队列,kafka,分布式

在初始状态下,会出现两种情况:

  1. leader处理完生产者请求后,follower发送一个fetch请求。

  2. follower的fetch请求阻塞时间内,leader收到生产者发送的请求

第一种情况

生产者发送一条消息,leader处理后,消息追加到本地log,更新LEO为1。

Kafka入门05——基础知识,消息队列,kafka,分布式

follower第一次发起fetch请求,offset=0;

leader收到后确认remote LEO为0,

HW由LEO和remote LEO的最小值决定,HW = 0,

leader回复response,包含消息和HW=0。

follower收到response,追加消息到本地log,更新LEO=1。

Kafka入门05——基础知识,消息队列,kafka,分布式

follower第二次发起fetch请求,offset=1;

leader收到后确认remote LEO为1,

HW由LEO和remote LEO的最小值决定,HW = 1,

leader回复response,包含消息(没有数据就返回空)和HW=1。

follower收到response,追加消息到本地log(有就写入本地日志),更新HW=1。

Kafka入门05——基础知识,消息队列,kafka,分布式

第一种情况到此就完成了数据同步,消费者就可以消费offset=1的这条消息了。

第二种情况

fetch在阻塞的过程中leader收到了生产者发送的消息,就会唤醒fetch请求,后面和第一种情况一致。

  1. leader将消息写入本地日志,更新leader的LEO

  2. 唤醒follower的fetch请求

  3. 更新HW

数据丢失的情况

Kafka中min.insync.replicas=1默认设定ISR中的最小副本数为1,并且acks设置为-1(需要所有副本确认)才生效。

意思就是需要至少1个副本同步才能表示消息时提交的,当min.insync.replicas=1时,只要leader将消息写入log就认为是“已提交”,而延迟一轮fetch rpc更新HW值的设计使得follower HW的值是异步延迟更新的。

假设这个过程中,leader发生变更,那新leader中的HW值就有可能是过期的,使得“已提交” 的消息被删除。

acks表示生产者发送消息到broker上以后的确认之。

  • 0:表示不需要确认。时延小风险大(server宕机,数据就会丢失)

  • 1:表示只需要leader确认。时延小同时确保leader接收成功

  • all(-1):需要ISR所有replicas确认。速度慢,安全性最高,但ISR会缩小到只有一个replicas,也不一定能避免数据丢失。

解决方案

Kafka的0.11版本引入了leader epoch解决数据丢失问题。 leader epoch是一对值(epoch,offset),epoch从0递增,当leader变更会epoch+1,offset是对应的leader写入第一条消息的offset。

Epoch 的作用

  1. 数据丢失恢复:Epoch 机制用于解决因为领导副本故障而导致的数据丢失问题。当一个新的领导副本被选定时,Kafka 会使用 Epoch 来确定哪些追随者副本具有相同的数据,并将数据从这些追随者副本中恢复。

  2. 数据冲突解决:Epoch 也用于解决数据冲突问题,确保只有具有最新数据的副本成为新的领导副本。

举个例子:

在分区的本地磁盘上持久化了一个/tmp/kafkalog/topic/leader-epoch-checkpoint的文件,文件的内容类似于[0,50],[1,89],[2,100]...leader broker会保存这样一个缓存,定期写入文件中。

当leader写log时,会尝试更新整个缓存。

  • 如果leader首次写,缓存中新加一条数据。

  • 如果leader不是首次写,那就不更新。

副本每次成为loader时都会查询这部分缓存,获取对应的leader版本的offset。

针对数据丢失的场景,就有了对应的解决办法:

  1. follower宕机恢复后

    • leader没有发生改变:发送OffsetForLeaderEpochRequest请求给leader,leader返回LEO

    • leader发生改变:follower发送的Request中的epoch和leader不同,leader会去查找follower的epoch+1对应的StartOffset,也就是新leader的LEO,返回给follower。

  2. leader宕机了,重新选举了leader:原本的follower就变成了leader,epoch从0变为了1,原本follower中的LEO值得到了保留。

Leader副本的选举过程

KafkaController会监听Zookeeper的/broker/ids节点路径,有broker挂了的时候,对应broker中分区的leader副本就需要重新选举。

选举策略:

  1. 优先从ISR列表中选取第一个作为leader副本,叫优先副本。

  2. 如果ISR列表为空,查看topic的unclean.leader.election.enable配置。

    • true:允许选择非ISR列表的副本作为leader,有可能数据丢失

    • false:不允许选择非ISR列表的副本作为leader,抛出异常,选举失败

  3. 在2的配置为true的基础上,选出一个leader副本,并且ISR列表只包含该leader副本。选举成功后,将leader和ISR其他副本信息写入该分区对应的Zookeeper路径上。

日志清除策略和压缩策略
日志清除策略

kafka的日志使用的分段存储,一方面能减少文件内容的大小,另一方面方便kafka日志清理。日志清理策略有两个:

  • 根据消息的保留时间,超过指定时间的消息会被清理

  • 根据存储的数据大小,当日志文件大于一定的阈值就删除最旧的消息。

kafka有一个后台线程,定期检查是否存在可以删除的消息。对应的两个参数配置:log.retention.bytes和log.retention.hours。消息默认保留时间是7天。

日志压缩策略

消息的保存方式是key-value的形式,消费者只关心相同的key最新的value,kafka的压缩原理就是后台启动Cleaner线程,定期将相同的key进行合并,保存最新的value。

Kafka存储手段
零拷贝(Zero-Copy)

零拷贝是一种技术,通过它可以将数据从一个缓冲区(如内存)传输到另一个缓冲区,而不需要在中间进行数据的复制。这可以提高数据传输的效率和降低CPU和内存的开销。在 Kafka 中,零拷贝技术用于以下几个方面:

  1. 生产者:Kafka 生产者使用零拷贝来将消息从内存传输到网络套接字,从而提高发送性能。

  2. 消费者:Kafka 消费者使用零拷贝来将消息从网络套接字传输到内存,从而提高接收性能。

  3. 磁盘写入:Kafka 使用零拷贝来将数据从内存缓冲区写入到磁盘,这可以提高磁盘写入的效率。

页缓存(Page Cache)

Kafka 使用操作系统的页缓存来管理磁盘上的数据。Page Cache 是操作系统的一部分,它将磁盘上的数据缓存在内存中,以便快速读取和写入。Kafka 利用了页缓存来加速磁盘的读写操作,提高了消息的持久性和性能。

具体来说,Kafka 将消息写入到磁盘时,首先将消息写入到操作系统的页缓存中,然后异步刷写到磁盘上。这样,Kafka 可以将多个小的写操作合并成更大的写操作,减少磁盘 I/O 操作的次数,提高写入性能。

另外,当 Kafka 消费者读取消息时,它可以从页缓存中读取消息,而不必每次都直接访问磁盘,这降低了读取的延迟。

Kafka的消息可靠性

消息的可靠性很难达到百分百完全可靠的地步,常常会用几个9作为衡量标准。kafka保证消息可靠性的手段:

  • 分区和副本:Kafka 的消息被分布到多个分区中,每个分区通常有多个副本。这样即使其中一个节点或分区发生故障,消息仍然可以从其他节点或副本中获取,从而提高可用性和可靠性。

  • Leader-Follower 架构:每个分区都有一个领导副本(Leader)和多个追随者副本(Followers)。生产者写入消息到领导副本,然后领导副本负责将消息复制到追随者副本,确保数据冗余。

  • 消息持久性:Kafka 使用文件系统和操作系统的缓存来提高消息的持久性。消息首先写入到文件系统缓存,然后异步刷写到磁盘,以避免写入性能的下降。

  • 复制同步:Kafka 使用复制同步机制来确保数据同步。只有当追随者副本确认已成功复制数据后,生产者才会收到确认。

  • 消息确认:生产者和消费者可以配置确认机制,确保消息的可靠性。生产者可以等待所有副本都确认成功后才发送确认,而消费者可以等待消息处理成功后才发送确认。

  • 数据冗余:消息在多个副本之间进行冗余,如果一个副本出现故障,仍然可以从其他副本获取数据。

  • 再均衡(Rebalance):在消费者组中,Kafka 使用再均衡机制来确保分区的重新分配,以提供高可用性和数据冗余。

  • 持久性日志:Kafka 的日志文件具有持久性,即使 Kafka 服务重启,数据也不会丢失。文章来源地址https://www.toymoban.com/news/detail-717628.html

到了这里,关于Kafka入门05——基础知识的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Kafka 基础知识-01

    目录 一、Kafka概述 1、简介 2、消息队列 (1)消息队列应用场景 (2)消息队列的两种模式 ​3、Kafka的基础架构 二、Kafka的安装与常见命令 1、Kafka的安装 2、Kafka的命令行操作 (1)kafka-topics.sh (2)kafka-console-producer.sh和kafka-console-consumer.sh ​三、Kafka的生产者 1、发送原理 2、

    2024年01月25日
    浏览(42)
  • 消息队列kafka基础,基于go代码举例

    broker就是单个kafka实例。Kafka集群中,一个kafka服务器就是一个broker。 一类消息的集合。在kafka中,消息以主题为单位进行归类,producer负责将消息发送到指定的主题,而consumer负责订阅主题并进行消费。在生产者向kafka发送数据以及消费者订阅数据都要指定具体的topic来消费。

    2024年02月02日
    浏览(43)
  • Kafka 3.0 基础知识 + 原理 (了解一篇就够)

    简述: 首先main线程作为消息生产的主线程,经过拦截器(处理消息),再到序列化器(非JDK自带),最后到分区器,分区器维护 Record Accumulator(消息累加器),用于将多个消息合并成一个批次。 Sender线程是专门用于消息发送的线程,当 Record Accumulator中的 双端队列的batch

    2023年04月13日
    浏览(47)
  • Kafka 之生产者与消费者基础知识:基本配置、拦截器、序列化、分区器

    kafaf集群地址列表:理论上写一个节点地址,就相当于绑定了整个kafka集群了,但是建议多写几个,如果只写一个,万一宕机就麻烦了 kafka消息的key和value要指定序列化方法 kafka对应的生产者id 使用java代码表示则为以下代码:  可使用 retries 参数 进行设置,同时要注意记住两

    2024年02月05日
    浏览(55)
  • 【Kafka】消息队列Kafka进阶

    生产者分区写入策略 生产者写入消息到 topic,Kafka 将依据不同的策略将数据分配到不同的分区中。 轮询分区策略 随机分区策略 按key分区分配策略 自定义分区策略 轮询策略   默认的策略,也是使用最多的策略,可以最大限度保证所有消息平均分配到一个分区。如果在生产

    2024年02月15日
    浏览(42)
  • 分布式 - 消息队列Kafka:Kafka生产者发送消息的方式

    不管是把Kafka作为消息队列、消息总线还是数据存储平台,总是需要一个可以往Kafka写入数据的生产者、一个可以从Kafka读取数据的消费者,或者一个兼具两种角色的应用程序。 Kafka 生产者是指使用 Apache Kafka 消息系统的应用程序,它们负责将消息发送到 Kafka 集群中的一个或多

    2024年02月13日
    浏览(44)
  • 分布式 - 消息队列Kafka:Kafka 消费者消息消费与参数配置

    01. 创建消费者 在读取消息之前,需要先创建一个KafkaConsumer对象。创建KafkaConsumer对象与创建KafkaProducer对象非常相似——把想要传给消费者的属性放在Properties对象里。 为简单起见,这里只提供4个必要的属性:bootstrap.servers、key.deserializer 和 value.deserializer。 ① bootstrap.servers 指

    2024年02月12日
    浏览(45)
  • 分布式 - 消息队列Kafka:Kafka生产者发送消息的分区策略

    01. Kafka 分区的作用 分区的作用就是提供负载均衡的能力,或者说对数据进行分区的主要原因,就是为了实现系统的高伸缩性。不同的分区能够被放置到不同节点的机器上,而数据的读写操作也都是针对分区这个粒度而进行的,这样每个节点的机器都能独立地执行各自分区的

    2024年02月13日
    浏览(54)
  • 消息队列 Kafka

    Kafka 是一个分布式的基于发布/订阅模式的消息队列(MQ,Message Queue),主要应用于大数据实时处理领域 在高并发环境下,同步请求来不及处理会发生堵塞,从而触发too many connection错误,引发雪崩效应。比如大量的请求并发访问数据库,导致行锁表锁,最后请求线程会堆积过

    2024年02月07日
    浏览(39)
  • 消息队列之王——Kafka

        在学习kafka之前,我们需要先学习 Zookeeper ,那Zookeeper是什么呢? Zookeeper 是一个开源的分布式的,为分布式框架提供协调服务的Apache项目。         Zookeeper从 设计模式 角度来理解:是一个基于观察者模式设计的 分布式服务管理框架 ,它 负责存储和管理 大家都关心

    2024年01月23日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包