如何在spark中使用scikit-learn和tensorflow等第三方python包

这篇具有很好参考价值的文章主要介绍了如何在spark中使用scikit-learn和tensorflow等第三方python包。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 打包需要的python包

首先我们用conda包管理工具对我们需要的python包进行虚拟环境创建:

conda create -n python37 --copy -y -q python=3.7 --prefix /your/workspace/path scikit-learn tensorflow

下面是对每个参数的解释(😁这里让chatgpt给出的解释,自己就不手打了😊)

conda create: 这是创建Conda环境的命令。

-n python37: -n参数后跟着你想要创建的环境的名称,这里是python37。你可以将环境名称替换为你喜欢的名称。

–copy: 这个选项指示Conda在创建环境时复制现有系统Python中的库。这有助于确保环境中包含与系统Python相同的库,以避免潜在的问题。

-y: 这个选项用于自动确认环境的创建,而不需要手动确认。

-q: 这个选项用于减少命令的输出,即以静默模式运行。

python=3.7: 这是要在环境中安装的Python版本的规范。在这个示例中,它指定要安装Python 3.7。

–prefix: 环境的安装位置

scikit-learn: 这是一个Python机器学习库,它会在新环境中安装。

tensorflow: 这是深度学习框架TensorFlow,也会在新环境中安装。

这个命令的目的是创建一个名为python37的Conda环境,将其中的Python版本设置为3.7,同时在环境中安装了scikit-learn和tensorflow软件包(后面可以放更多我们想要使用的python包),以便在该环境中进行机器学习和深度学习的开发和实验。环境名称、Python版本和要安装的软件包可以根据你的需求进行修改。
然后我们将生成的python环境进行压缩打包:

zip -r python37.zip /your/workspach/path/python37

2 修改spark配置文件

--archives /your/path/python37.zip#python37
--conf spark.yarn.appMasterEnv.PYSPARK_PYTHON=./python37/python37/bin/python3.7 \

–archives /your/path/python37.zip#python37:
–archives参数用于在Spark应用程序运行期间将本地压缩档案文件解压到YARN集群节点上。
/your/path/python37.zip 是包含Python环境的压缩文件的本地文件路径。
#python37 是为档案文件定义的别名,这将在Spark应用程序中使用。
这个参数的目的是将名为python37.zip的压缩文件解压到YARN集群节点,并将其路径设置为python37,以供Spark应用程序使用。这通常用于指定特定版本的Python环境,以便在Spark任务中使用。
–conf spark.yarn.appMasterEnv.PYSPARK_PYTHON=./python37/python37/bin/python3.7:
–conf参数用于设置Spark配置属性。
spark.yarn.appMasterEnv.PYSPARK_PYTHON 是一个Spark配置属性,它指定了YARN应用程序的主节点(ApplicationMaster)使用的Python解释器。
./python37/python37/bin/python3.7 是实际Python解释器的路径,它将在YARN应用程序的主节点上执行

这个参数的目的是告诉Spark应用程序在YARN的主节点上使用特定的Python解释器,即./python37/python37/bin/python3.7。这通常用于确保Spark应用程序使用正确的Python版本和环境来运行任务。

😁😁😁😁😁😁😁😁😁😁😁😁😁😁😁😁😁😁😁😁😁😁😁😁😁😁😁😁😁
再宣传下这个方法是我们在用pyspark使用外部包的绝佳好方案文章来源地址https://www.toymoban.com/news/detail-718227.html

到了这里,关于如何在spark中使用scikit-learn和tensorflow等第三方python包的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python案例|使用Scikit-learn进行房屋租金回归分析

    回归分析是一种预测性的建模技术,研究的是因变量(目标)和自变量(预测器)之间的关系。回归分析是建模和分析数据的重要工具。比如预测股票价格走势、预测居民收入、预测微博互动量等等。常用的有线性回归、逻辑回归、岭回归等。本文主要使用线性回归。 本文使

    2024年02月15日
    浏览(57)
  • Python案例|使用Scikit-learn实现客户聚类模型

    聚类是一种经典的无监督学习方法,无监督学习的目标是通过对无标记训练样本的学习,发掘和揭示数据集本身潜在的结构与规律,即不依赖于训练数据集的类标记信息。聚类试图将数据集划分为若干个互不相交的类簇,从而每个簇对应一个潜在的类别。 聚类算法体现了“物

    2024年02月15日
    浏览(35)
  • 机器学习实战----使用Python和Scikit-Learn构建简单分类器

    前言: Hello大家好,我是Dream。 今天来学习一下如何使用Python和Scikit-Learn构建一个简单的分类器 今天我们将学习 使用Python和Scikit-Learn创建一个简单的文本分类器来识别垃圾邮件 。我们将先介绍数据集,并通过可视化和数据预处理方式更好地理解数据集。接着,我们将选择一

    2023年04月09日
    浏览(46)
  • AI机器学习实战 | 使用 Python 和 scikit-learn 库进行情感分析

    专栏集锦,大佬们可以收藏以备不时之需 Spring Cloud实战专栏:https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏:https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏:https://blog.csdn.net/superdangbo/category_9271502.html tensorflow专栏:https://blog.csdn.net/superdangbo/category_869

    2024年02月05日
    浏览(40)
  • python数据分析与应用:使用scikit-learn构建模型分析 第六章实训(1,2)

    有问题可以加我微信交流学习,bmt1014 (gcc的同学不要抄袭呀!) 一、实验目的 1、掌握skleam转换器的用法。 2、掌握训练集、测试集划分的方法。 3、掌握使用sklearm进行PCA降维的方法。 4、掌握 sklearn 估计器的用法。 5、掌握聚类模型的构建与评价方法。 6、掌握分类模型的构

    2024年02月09日
    浏览(51)
  • 【scikit-learn基础】--概述

    Scikit-learn 是一个基于 Python 的开源机器学习库,它提供了大量的机器学习算法和工具,方便用户进行数据挖掘、分析和预测。 Scikit-learn 是基于另外两个知名的库 Scipy 和 Numpy 的, 关于 Scipy 和 Numpy 等库,之前的系列文章中有介绍: Scipy 基础系列 Numpy 基础系列 自从 AlphaGo 再度

    2024年02月05日
    浏览(41)
  • Scikit-learn:全面概述

    在机器学习领域,Python已经成为一种重要的编程语言,这得益于其简洁、多功能和丰富的库。在这些库中,Scikit-learn作为其中最受欢迎和强大的之一,脱颖而出。它提供了各种工具、算法和功能,使用户能够轻松地进行各种机器学习任务。在本文中,我们将探索Scikit-learn的主

    2024年02月10日
    浏览(51)
  • 【数据科学】Scikit-learn

    Scikit-learn 是 开源的Python库 ,通过统一的界面实现 机器学习 、 预处理 、 交叉验证及可视化算法 。   以上是使用 scikit-learn 库 进行 k-最近邻(KNN)分类 的流程,得到 KNN 分类器在 iris 数据集上的预测准确率。    Scikit-learn 处理的数据是 存储为 NumPy 数组或 SciPy 稀疏矩阵

    2024年02月07日
    浏览(47)
  • 如何解决`load_boston` has been removed from scikit-learn since version 1.2.

    load_boston  已经从 scikit-learn 中删除,自 1.2 版本起。可以通过以下方式解决: 降低scikit-learn的板本 从 boston 房价数据集的网站下载该数据集。该网站提供了 boston 房价数据集的 CSV 文件格式。 如果您已经安装了 pandas 库,则可以使用 pandas 库中的  read_csv  函数来读取 CSV 文件

    2024年02月06日
    浏览(37)
  • AI机器学习 | 基于librosa库和使用scikit-learn库中的分类器进行语音识别

    专栏集锦,大佬们可以收藏以备不时之需 Spring Cloud实战专栏:https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏:https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏:https://blog.csdn.net/superdangbo/category_9271502.html tensorflow专栏:https://blog.csdn.net/superdangbo/category_869

    2024年02月05日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包