05 MIT线性代数-转置,置换,向量空间Transposes, permutations, spaces

这篇具有很好参考价值的文章主要介绍了05 MIT线性代数-转置,置换,向量空间Transposes, permutations, spaces。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. Permutations P:

execute row exchanges

becomes PA = LU for any invertible A

Permutations P = identity matrix with reordered rows

m=n (n-1) ... (3) (2) (1) counts recordings, counts all nxn permuations

对于nxn矩阵存在着n!个置换矩阵

2. Transpose:

05 MIT线性代数-转置,置换,向量空间Transposes, permutations, spaces,线性代数,线性代数

2.1 Symmetric matrices

对称矩阵 

2.2 矩阵乘积的转置

 

2.3  is always symmetric

why? take transpose 

3. 向量空间 Vector spaces

向量空间对线性运算封闭,即空间内向量进行线性运算得到的向量仍在空间之内

example: = all 2-dim real vectors=x-y plane

first component, second component

  = all vectors with 3 components

  = all column vectors with m real components

所有向量空间必然包含零向量,因为任何向量数乘0或者加上反向量都会得到零向量,而因为向量空间对线性运算封闭,所以零向量必属于向量空间

反例 not a vector space: 

  中的第一象限则不是一个向量空间, 加法数乘不封闭

4. 子空间 Subspaces

a vector space inside , subspace of 

line in  through zero vector

反例:

中不穿过原点的直线就不是向量空间。子空间必须包含零向量,原因就是数乘0的到的零向量必须处于子空间中

subspaces of :

1. all of 

2. any line through   L(line)

3. zero vector only z(zero)

subspaces of :

1. all of 

2. any plane through  P(plane)

2. any line through   L(line)

3. zero vector only z(zero) = 

05 MIT线性代数-转置,置换,向量空间Transposes, permutations, spaces,线性代数,线性代数

5. 列空间 Column spaces

Columns in : all their combinations from a subspace called column space C(A)
05 MIT线性代数-转置,置换,向量空间Transposes, permutations, spaces,线性代数,线性代数

空间内包含两向量的所有线性组合

05 MIT线性代数-转置,置换,向量空间Transposes, permutations, spaces,线性代数,线性代数文章来源地址https://www.toymoban.com/news/detail-718332.html

到了这里,关于05 MIT线性代数-转置,置换,向量空间Transposes, permutations, spaces的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习-线性代数-向量、基底及向量空间

    理解 直观理解 行向量:把数字排成一行A = [ 4   5 ] [4~ 5] [ 4   5 ] 列向量:把数字排成一列A =   [ 4 5 ] left [ begin{matrix} 4 \\\\ 5 \\\\ end{matrix} right ]   [ 4 5 ​ ] 几何意义 默认在基底条件下(直角坐标系)中的坐标表示的一个点,也可以理解以原点为起点,到目标终点A的有向线段

    2024年02月06日
    浏览(59)
  • 线性代数(魏福义)——第一章:向量与线性空间

    坐标系中可使用向量处理几何与运动学的问题,一般使用到二维或者三维有序数组,如(x,y)、(x,y,z),这样的数组称作 向量, 实际问题会用到更多维的向量。 1.1.1向量 以有序数组表示向量。n个数排成的有序数组就是n维向量。 α=(a1,a2,a3...,an)称为 行向量 ;将其

    2024年03月21日
    浏览(47)
  • 向量空间模型的线性代数基础

    [toc] 线性代数是向量空间模型的基础,对于学习向量空间模型的朋友,理解线性代数基础知识是非常必要的。本文将介绍向量空间模型的线性代数基础,包括基本概念、技术原理、实现步骤、应用示例以及优化与改进等内容。 引言 线性代数是数学的一个分支,主要研究线性

    2024年02月16日
    浏览(43)
  • 机器学习-线性代数-1-向量、基底及向量空间

    理解 直观理解 行向量:把数字排成一行A = [ 4   5 ] [4~ 5] [ 4   5 ] 列向量:把数字排成一列A =   [ 4 5 ] left [ begin{matrix} 4 \\\\ 5 \\\\ end{matrix} right ]   [ 4 5 ​ ] 几何意义 默认在基底条件下(直角坐标系)中的坐标表示的一个点,也可以理解以原点为起点,到目标终点A的有向线段

    2024年02月10日
    浏览(55)
  • 线性代数中的向量和向量空间的应用

    作者:禅与计算机程序设计艺术 作为一位人工智能专家,程序员和软件架构师,我深知线性代数在数据处理和机器学习中的重要性。本文旨在探讨线性代数中向量和向量空间的应用,帮助读者更好地理解和应用这些技术。 技术原理及概念 线性代数是数学的一个分支,主要研

    2024年02月14日
    浏览(51)
  • 线性代数3,什么是向量 向量空间(草稿,建设ing)

    目录 1 标量 scalar 2 向量 /矢量 vector 2.1 什么是向量(直观) 2.2 什么是向量(严格定义) 2.3 向量如何表示?在向量空间的表示方法 3 矩阵(matrix) 3.1 矩阵的定义 3.2 矩阵和向量的关系 3.3  方阵 4 ​张量(tensor):向量,矩阵都可以看成张量 4.1 张量的定义 4.2 更多维度的张量,举

    2024年02月12日
    浏览(34)
  • 机器学习-线性代数-逆映射与向量空间

    矩阵的本质是映射。对于一个 m × n m × n m × n 的矩阵,乘法 y = A x y = Ax y = A x 的作用就是将向量从 n n n 维原空间中的 x x x 坐标位置,映射到 m m m 维目标空间的 y y y 坐标位置,这是正向映射的过程。那么,如果已知结果向量的坐标 y y y 去反推原向量的坐标 x x x ,这个过程就

    2024年02月09日
    浏览(45)
  • 线性代数 --- 向量空间(vector space)与子空间(subspace)

            向量空间就是由包含n个分量的列向量所组成的Rn的空间,其中R表示实数。例如,R2就代表了一般的x-y平面,其中包含两个分量的向量表示坐标系中的一个点(x,y)。同理,R3中的一个向量,包含三个分量,可以表示三维坐标系中的一个点(x,y,z)。 也就是说,向量空间,

    2024年02月05日
    浏览(75)
  • 机器学习-线性代数-2-逆映射与向量空间

    矩阵的本质是映射。对于一个 m × n m × n m × n 的矩阵,乘法 y = A x y = Ax y = A x 的作用就是将向量从 n n n 维原空间中的 x x x 坐标位置,映射到 m m m 维目标空间的 y y y 坐标位置,这是正向映射的过程。那么,如果已知结果向量的坐标 y y y 去反推原向量的坐标 x x x ,这个过程就

    2024年02月11日
    浏览(42)
  • 机器学习-线性代数-3-逆映射与向量空间

    矩阵的本质是映射。对于一个 m × n m × n m × n 的矩阵,乘法 y = A x y = Ax y = A x 的作用就是将向量从 n n n 维原空间中的 x x x 坐标位置,映射到 m m m 维目标空间的 y y y 坐标位置,这是正向映射的过程。那么,如果已知结果向量的坐标 y y y 去反推原向量的坐标 x x x ,这个过程就

    2024年02月15日
    浏览(33)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包