Python深度学习实战-基于class类搭建BP神经网络实现分类任务(附源码和实现效果)

这篇具有很好参考价值的文章主要介绍了Python深度学习实战-基于class类搭建BP神经网络实现分类任务(附源码和实现效果)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

实现功能

上篇文章介绍了用Squential搭建BP神经网络,Squential可以搭建出上层输出就是下层输入的顺序神经网络结构,无法搭出一些带有跳连的非顺序网络结构,这个时候我们可以选择类class搭建封装神经网络结构。

  1. 第一步:import tensorflow as tf:导入模块

  2. 第二步:制定输入网络的训练集和测试集

  3. 第三步:搭建网络结构

  4. 第四步:model.compile():配置训练方法

  5. 第五步:model.fit():执行训练过程

  6. 第六步:model.summary():打印网络结构

实现代码

import tensorflow as tf
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

class NeuralNetwork(tf.keras.Model):
    def __init__(self, input_size, hidden_size, output_size):
        super(NeuralNetwork, self).__init__()
        self.dense1 = tf.keras.layers.Dense(hidden_size, activation='relu')
        self.dense2 = tf.keras.layers.Dense(hidden_size, activation='relu')
        self.dense3 = tf.keras.layers.Dense(output_size, activation='softmax')

    def call(self, inputs):
        x = self.dense1(inputs)
        x = self.dense2(x)
        x = self.dense3(x)
        return x
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target

# 数据预处理
scaler = StandardScaler()
X = scaler.fit_transform(X)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建模型实例
input_size = X.shape[1]
hidden_size = 64
output_size = len(set(y))
model = NeuralNetwork(input_size, hidden_size, output_size)

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32)
model.summary()

# 评估模型
test_loss, test_accuracy = model.evaluate(X_test, y_test)

实现效果

Python深度学习实战-基于class类搭建BP神经网络实现分类任务(附源码和实现效果),深度学习,深度学习,python,神经网络,分类

本人读研期间发表5篇SCI数据挖掘相关论文,现在某研究院从事数据挖掘相关科研工作,对数据挖掘有一定认知和理解,会结合自身科研实践经历不定期分享关于python、机器学习、深度学习基础知识与案例。

致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。

邀请三个朋友关注V订阅号:数据杂坛,即可在后台联系我获取相关数据集和源码,送有关数据分析、数据挖掘、机器学习、深度学习相关的电子书籍。文章来源地址https://www.toymoban.com/news/detail-718376.html

到了这里,关于Python深度学习实战-基于class类搭建BP神经网络实现分类任务(附源码和实现效果)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python实现GA遗传算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战

    说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。 遗传算法(Genetic Algorithm,GA)最早是由美国的 John holland于20世纪70年代提出,该算法是根据大自然中生物体进化规律而设计提出的。是模拟达尔文生

    2024年02月14日
    浏览(227)
  • Python实现猎人猎物优化算法(HPO)优化BP神经网络回归模型(BP神经网络回归算法)项目实战

    说明:这是一个机器学习实战项目(附带 数据+代码+文档+视频讲解 ),如需 数据+代码+文档+视频讲解 可以直接到文章最后获取。 猎人猎物优化搜索算法(Hunter–prey optimizer, HPO)是由Naruei Keynia于2022年提出的一种最新的优化搜索算法。受到捕食动物(如狮子、豹子和狼)和猎物

    2024年02月09日
    浏览(51)
  • Python实现PSO粒子群优化算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战

    说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。 PSO是粒子群优化算法(Particle Swarm Optimization)的英文缩写,是一种基于种群的随机优化技术,由Eberhart和Kennedy于1995年提出。粒子群算法模仿昆虫、

    2024年02月13日
    浏览(55)
  • Python实现HBA混合蝙蝠智能算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战

    说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。   蝙蝠算法是2010年杨教授基于群体智能提出的启发式搜索算法,是一种搜索全局最优解的有效方法。该算法基于迭代优化,初始化为一组随机解,

    2024年02月16日
    浏览(55)
  • 深度学习图像分类实战——pytorch搭建卷积神经网络(AlexNet, LeNet, ResNet50)进行场景图像分类(详细)

    目录 1  一、实验过程 1.1  实验目的 1.2  实验简介 1.3  数据集的介绍 1.4  一、LeNet5网络模型 1.5  二、AlexNet网络模型 1.6  三、ResNet50(残差网络)网络模型  二、实验代码 导入实验所需要的库  参数配置 数据预处理 重新DataSet 加载数据转为DataLoader函数 可视化一批训练

    2024年02月05日
    浏览(66)
  • 深度学习实战基础案例——卷积神经网络(CNN)基于SqueezeNet的眼疾识别|第1例

    SqueezeNet是一种轻量且高效的CNN模型,它参数比AlexNet少50倍,但模型性能(accuracy)与AlexNet接近。顾名思义,Squeeze的中文意思是压缩和挤压的意思,所以我们通过算法的名字就可以猜想到,该算法一定是通过压缩模型来降低模型参数量的。当然任何算法的改进都是在原先的基

    2024年02月12日
    浏览(49)
  • BP神经网络(Python代码实现)基于pytorch

     BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,它的学习规则是 使用梯度下降法 , 通过反向传播来不断调整网络的权值和阈值 ,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hiddenlayer)和输出层(output layer)。BP网络的学习

    2024年02月11日
    浏览(56)
  • 基于 Python中的深度学习:神经网络与卷积神经网络

    当下,深度学习已经成为人工智能研究和应用领域的关键技术之一。作为一个开源的高级编程语言,Python提供了丰富的工具和库,为深度学习的研究和开发提供了便利。本文将深入探究Python中的深度学习,重点聚焦于神经网络与卷积神经网络的原理和应用。 深度学习是机器学

    2024年02月07日
    浏览(59)
  • 文本分类系统Python,基于深度学习CNN卷积神经网络

    文本分类系统,使用Python作为主要开发语言,通过TensorFlow搭建CNN卷积神经网络对十余种不同种类的文本数据集进行训练,最后得到一个h5格式的本地模型文件,然后采用Django开发网页界面,实现用户在界面中输入一段文字,识别其所属的文本种类。 在我们的日常生活和工作中

    2024年02月08日
    浏览(56)
  • 车牌识别系统Python,基于深度学习CNN卷积神经网络算法

    车牌识别系统,基于Python实现,通过TensorFlow搭建CNN卷积神经网络模型,对车牌数据集图片进行训练最后得到模型,并基于Django框架搭建网页端平台,实现用户在网页端输入一张图片识别其结果,并基于Pyqt5搭建桌面端可视化界面。 在智能交通和车辆监控领域,车牌识别技术扮

    2024年02月07日
    浏览(73)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包