一、基本知识
SDRAM : 即同步动态随机存储器(Synchronous Dynamic Random Access Memory), 同步是指其时钟频率与对应控制器(CPU/FPGA)的系统时钟频率相同,并且内部命令 的发送与数据传输都是以该时钟为基准;动态是指存储阵列需要不断的刷新来保证数据不丢失;随机指数据的读取和写入可以随机指定地址,而不是必须按照严格的线性次序变化。
SDRAM 使用电容的电荷存储特性存储数据,而 SRAM使用CMOS晶体管存储数据,这决定了SDRAM的运行功耗要远远低于SRAM。由于使用晶体管存储数据,要能够正确的存储一位数据,需要最少6个晶体管。因此,从芯片面积上来说,单片SRAM芯片的容量不可能做到很高。
通常情况下,SDRAM 是拥有四个 BANK 的动态刷新存储器,存储器工作在 3.3V 的电 压下,拥有一个同步接口,SDRAM 的所有信号都在时钟信号的上升沿被寄存。对于 SDRAM 的读写是以突发的方式进行的,对 sdram 的获取(读或者写)是从一个指定的地址开始,并按照编程好的数量(长度)的地址,以编程好的数据顺序读写数据。
教程:
SDR SDRAM: SDRAM设计教程之SDRAM结构深入剖析 altera (b站小梅哥教程)
DDR:小梅哥Xilinx ACX720 FPGA开发板自学教程V2.2.4 xilinx
DDR2:小梅哥DDR2简明教程V1.1 altera (b站小梅哥教程)
DDR3:blibli-小梅哥Xilinx FPGA基础入门到项目应用培训教程 xilinx
存取原理:先通过行地址打开行地址线,后通过列地址线打开列地址,便实现把电容与数据线连通,实现读/写操作。
打开行地址需要tRCD时间,后才能打开列地址。tRCD可查手册,计算需要多少个对应频率的时钟的延迟,进行设计。
打开列地址后,如果是读操作,需要CL(CAS READ LATENCY)个时钟周期才会出数据,如果是写操作,则数据需要同时送出,不用CL。
不同型号的sdram:命令、时序参数有区别
二、型号MT48LC16M16A2的sdram
引脚:
对于sdram的控制,通过CS_N、RAS_N、CAS_N、WE_N四个引脚来控制,故记这四个引脚组成的状态为控制命令cmd。
通过这个表来设置cmd。
1.时序设计
控制sdram只需要结合时序图和命令表,通过线性序列机和状态机来设计就可以。
1.上电初始化:通过计数器使sdram处于nop状态 不少于100us后,发出一个precharge命令,经过tRP时间(一直处于nop,下同),发出一个autorefresh命令,经过tRFC时间,再autorefresh一次,经过tRFC时间,便可发出load mode register命令配置模式寄存器。
通常都需要通过配置模式寄存器来设计突发类型(Burst type:即有两种模式);突发长度(burst length:即每次读或写的数据长度),输出周期间隔(CAS:即发出命令后经过几个周期开始出数据)具体模式如下图解释:
模式寄存器设置规则如下:
2.读/写命令:
器件手册给出了包括读/写在内的多种命令的时序图,根据时序图进行设计即可,比如常用的:
2.代码设计
类似IIC协议和SPI协议,依旧是状态机加线性序列机的形式来是实现。最底层用状态机实现每种状态需要的操作,中间层用线性序列机实现一个完整的读/写/其他操作需要经过几种状态的跳转。故先定义状态和命令cmd。
注意,设计时仍然需要注意时钟问题,给sdram的时钟是在上升沿读取数据,所以输出的数据在上升沿应该是稳定的,具体可以通过设计与读写两个时钟的移相来实现。
module sdram_driver(
input clk ,
input rst_n ,
input write_sig ,
input read_sig ,
input initial_sig ,
input [12:0]write_addr ,
input [1:0]write_bank ,
input [12:0]read_addr ,
input [1:0]read_bank ,
output reg [3:0]cmd ,
output reg [1:0]bank ,
output reg [12:0]addr ,
output reg [11:0]mode ,
output reg cke_ctrl ,
output reg [1:0]dqm_ctrl ,
output reg initial_done ,
output reg [15:0]read_data ,
output reg trans_done ,
inout [15:0]DQ
);
//状态参数
localparam nop1 = 4'b1000 ; //空闲态:禁止命令
localparam nop2 = 4'b0111 ; //空闲态:空命令
localparam active = 4'b0011 ; //选bank与行
localparam read = 4'b0101 ; //选bank和列,启动突发读 ,最后一位为屏蔽位
localparam write = 4'b0100 ; //选bank和列,启动突发读 ,最后一位为屏蔽位
localparam burst_terminate = 4'b0110 ; //突发中止
localparam precharge = 4'b0010 ; //关闭行,预充电
localparam refresh = 4'b0001 ; //刷新
localparam load_mode_register = 4'b0000 ; //a0 - a11 tmrd
// mode register
localparam M9_BL_mode = 1'b0 ; //length
localparam M9_SL_mode = 1'b1 ; //single
localparam M87_SO_mode = 2'b00 ;
localparam M654_CAS_2 = 3'b010 ;//CL
localparam M654_CAS_3 = 3'b011 ;//CL
localparam M3_seq = 1'b0 ;
localparam M3_intl = 1'b1 ;
localparam M210_BL_1 = 3'b000 ;//be able to replace single read/write (M9)
localparam M210_BL_2 = 3'b001 ;
localparam M210_BL_4 = 3'b010 ;
localparam M210_BL_8 = 3'b011 ;
localparam M210_BL_full = 3'b111 ;
// read with auto precharge ?
localparam auto_precharge = 1 ;
wire rd_with_auto , wr_with_auto ;
assign rd_with_auto = auto_precharge ;
assign wr_with_auto = auto_precharge ;
reg [15:0]cmd_cnt ;
always@( posedge clk or negedge rst_n )
if(!rst_n)
begin
cmd_cnt <= 0 ;
cmd <= nop2 ;
bank <= 0 ;
addr <= 0 ;
mode <= 0 ;
cke_ctrl <= 0 ;
dqm_ctrl <= 0 ;
trans_done <= 0 ;
initial_done<= 0 ;
read_data <= 0 ;
end
else if(initial_sig)
begin
cmd_cnt <= cmd_cnt + 1 ;
case(cmd_cnt)
1:cmd <= nop2 ;//delay > 100 us
10005: begin cke_ctrl <= 1 ; end
10010: begin cmd <= precharge ; addr[10] = 1 ; end //precharge all banks : tRP >= 20ns (2T)
10011: begin cmd <= nop2 ; end
10015: begin cmd <= refresh ; cke_ctrl <= 1 ; end //auto refresh : >= 2T(RFC) ; T(RFC) >= 66ns 1T(auto)(256Mb) = 8192
10016: begin cmd <= nop2 ; end
10026: begin cmd <= refresh ; cke_ctrl <= 1 ; end //
10027: begin cmd <= nop2 ; end //
10040: begin cmd <= load_mode_register ; bank <= 0 ; mode <= { 2'b00 , M9_BL_mode , M87_SO_mode , M654_CAS_3 , M3_seq , M210_BL_4 } ;end //set mode :t(mrd) = 2t(ck) = 2*6 = 12 ns
10041: begin cmd <= nop2 ; end
10045: begin initial_done <= 1 ; end
10046: begin cmd_cnt <= 0 ; end
default:cmd <= nop2 ;
endcase
end
else if(initial_done)
begin
if(write_sig)
begin
if(wr_with_auto)
begin
cmd_cnt <= cmd_cnt + 1 ;
case(cmd_cnt)
1:begin cmd <= active ; bank <= write_bank ; addr <= write_addr ; end
4:begin cmd <= write ; bank <= write_bank ; addr <= {write_addr[12:11],1'b1,write_addr[9:0]}; end
10:begin trans_done <= 1 ; cmd_cnt <= 0 ;end
default:cmd<=nop2;
endcase
end
else if(~wr_with_auto)
begin
cmd_cnt <= cmd_cnt + 1 ;
case(cmd_cnt)
1:begin cmd <= active ; bank <= write_bank ; addr <= write_addr ; end
4:begin cmd <= write ; bank <= write_bank ; addr <= {write_addr[12:11],1'b1,write_addr[9:0]}; end
9:begin cmd <= precharge ; addr[10] = 1 ;end
12:begin trans_done <= 1 ; cmd_cnt <= 0 ;end
default:cmd<=nop2;
endcase
end
end
else if(read_sig)
begin
if( rd_with_auto )
begin
cmd_cnt <= cmd_cnt + 1 ;
case(cmd_cnt)
1:begin cmd <= active ; bank <= read_bank ; addr <= read_addr ; end
4:begin cmd <= read ; bank <= read_bank ; addr <= {read_addr[12:11],1'b1,read_addr[9:0]}; end //addr10 control auto charge
9:begin read_data <= DQ ; end
10:begin read_data <= DQ ; end
11:begin read_data <= DQ ; end
12:begin read_data <= DQ ; end
13:begin trans_done<= 1 ; cmd_cnt <= 0 ; end
default:begin cmd <= nop2 ;read_data <= DQ ;end
endcase
end
else if( ~rd_with_auto )
begin
cmd_cnt <= cmd_cnt + 1 ;
case(cmd_cnt)
1:begin cmd <= active ; bank <= read_bank ; addr <= read_addr ; end
4:begin cmd <= read ; bank <= read_bank ; addr <= {read_addr[12:11],1'b0,read_addr[9:0]}; end //addr10: control auto charge
9:begin read_data <= DQ ; end
10:begin read_data <= DQ ; end
11:begin read_data <= DQ ; cmd <= precharge ; addr[10] = 1 ; end //precharge
12:begin read_data <= DQ ; end
14:begin trans_done<= 1 ; cmd_cnt <= 0 ; end
default:cmd <= nop2 ;
endcase
end
end
else
begin
cmd <= nop2 ;
cmd_cnt <= 0 ;
trans_done<= 0 ;
end
end
else
begin
cmd_cnt <= 0 ;
end
endmodule
//-75 100MHz CL = 2 setup = 1.5 hold = 0.8 上升沿读写数据//
// 100MHz : T = 10ns //
// tRP >= 20ns ; T(RFC) >= 66ns ; t(mrd) = 12 ns
// 这里实现 普通的写和读 ;有特殊要求的根据手册进行cmd修改即可
module sdram_ctrl(
input fpga_clk ,
input rst_n ,
input write_sig ,
input read_sig ,
input [12:0]write_addr ,
input [1:0]write_bank ,
input [15:0]write_data ,
input [12:0]read_addr ,
input [1:0]read_bank ,
output trans_done ,
output [15:0]read_data ,
output sclk ,
output CKE ,
output CS_N ,
output RAS_N ,
output CAS_N ,
output WE_N ,
output [1:0]DQM ,//高电平时屏蔽
output [12:0]SA ,//A12 - A0
output [1:0]BA ,
inout [15:0]DQ
);
wire clk_100m;
wire clk_100m_90shift ;
pll pll_inst(
.inclk0(fpga_clk),
.c0(clk_100m),
.c1(clk_100m_90shift)
);
assign sclk = clk_100m_90shift ;
//read / write signal catch
reg write_sig_reg ;
always@(posedge fpga_clk or negedge rst_n)
if(!rst_n)
write_sig_reg <= 0 ;
else
write_sig_reg <= write_sig ;
reg read_sig_reg ;
always@(posedge fpga_clk or negedge rst_n)
if(!rst_n)
read_sig_reg <= 0 ;
else
read_sig_reg <= read_sig ;
reg write_signal ;
reg read_signal ;
always@(posedge fpga_clk or negedge rst_n)
if(!rst_n)
write_signal <= 0 ;
else if( write_sig & (!write_sig_reg ) )
write_signal <= 1 ;
else if(trans_done)
write_signal <= 0 ;
always@(posedge fpga_clk or negedge rst_n)
if(!rst_n)
read_signal <= 0 ;
else if( read_sig & (!read_sig_reg ) )
read_signal <= 1 ;
else if(trans_done)
read_signal <= 0 ;
// initial sdram
reg [5:0]initial_cnt ;
wire initial_done ;
always@(posedge clk_100m or negedge rst_n)
if(!rst_n)
initial_cnt <= 0 ;
else if( initial_cnt < 50 )
initial_cnt <= initial_cnt + 1 ;
else
initial_cnt <= initial_cnt ;
reg initial_sig ;
always@(posedge clk_100m or negedge rst_n)
if(!rst_n)
initial_sig <= 0 ;
else if(initial_cnt == 48)
initial_sig <= 1 ;
else if(initial_done)
initial_sig <= 0 ;
wire [3:0]cmd ;
wire [1:0]bank ;
wire [12:0]addr ;
wire [11:0]mode ;
wire cke_ctrl ;
wire [1:0]dqm_ctrl ;
sdram_driver sdram_driver_inst(
.clk(clk_100m) ,
.rst_n(rst_n) ,
.write_sig(write_signal) ,
.read_sig(read_signal) ,
.initial_sig(initial_sig),
.write_addr(write_addr) ,
.write_bank(write_bank) ,
.read_addr(read_addr) ,
.read_bank(read_bank) ,
.cmd(cmd) ,
.bank(bank) ,
.addr(addr) ,
.mode(mode) ,
.cke_ctrl(cke_ctrl) ,
.dqm_ctrl(dqm_ctrl) ,
.initial_done(initial_done),
.read_data(read_data) ,
.trans_done(trans_done) ,
.DQ(DQ)
);
sdram_underlying_logic sdram_underlying_logic_inst(
.clk(clk_100m) ,
.rst_n(rst_n) ,
.mode(mode),//A11 -A0
.cmd(cmd) ,
.cke_ctrl(cke_ctrl) ,
.bank(bank) ,
.addr(addr) ,
.write_data(write_data) ,
.dqm_ctrl(dqm_ctrl),
.CKE(CKE) ,
.CS_N(CS_N) ,
.RAS_N(RAS_N) ,
.CAS_N(CAS_N) ,
.WE_N(WE_N) ,
.DQM(DQM) ,//高电平时屏蔽
.SA(SA) ,//A12 - A0
.BA(BA) ,
.DQ(DQ)
);
endmodule
module sdram_underlying_logic(
input clk ,
input rst_n ,
input [11:0]mode,//A11 -A0
input [3:0]cmd ,
input cke_ctrl ,
input [1:0]bank ,
input [12:0]addr ,
input [15:0]write_data ,
input [1:0]dqm_ctrl,
output reg CKE ,
output reg CS_N ,
output reg RAS_N ,
output reg CAS_N ,
output reg WE_N ,
output reg[1:0]DQM ,//高电平时屏蔽
output reg[12:0]SA ,//A12 - A0
output reg [1:0]BA ,
inout [15:0]DQ
);
reg DQ_ctrl ;
reg [15:0]DQ_out ;
assign DQ = (DQ_ctrl ? DQ_out : 16'hzzzz) ;///
//状态参数
localparam nop1 = 10'b1000000000 ; //空闲态:禁止命令
localparam nop2 = 10'b0100000000 ; //空闲态:空命令
localparam active = 10'b0010000000 ; //选bank与行
localparam read = 10'b0001000000 ; //选bank和列,启动突发读 ,最后一位为屏蔽位
localparam write = 10'b0000100000 ; //选bank和列,启动突发读 ,最后一位为屏蔽位
localparam burst_terminate = 10'b0000010000 ; //突发中止
localparam precharge = 10'b0000001000 ; //关闭行,预充电
localparam auto_refresh = 10'b0000000100 ; //自动刷新
localparam self_refresh = 10'b0000000010 ; //自刷新
localparam load_mode_register = 10'b0000000001 ; //加载模式寄存器
reg [9:0]state ;//状态机
always@(posedge clk or negedge rst_n)
if(!rst_n)
state <= nop2 ;
else if( cmd[3] )
state <= nop1 ;
else if( cmd == 4'b0111 )
state <= nop2 ;
else if( cmd == 4'b0011 )
state <= active ;
else if( cmd == 4'b0101 )
state <= read ;
else if( cmd == 4'b0100 )
state <= write ;
else if( cmd == 4'b0110 )
state <= burst_terminate ;
else if( cmd == 4'b0010 )
state <= precharge ;
else if( cmd == 4'b0001 )
begin
if(cke_ctrl)
state <= auto_refresh ;
else
state <= self_refresh ;
end
else if( cmd == 4'b0000 )
state <= load_mode_register ;
reg [7:0]state_cnt ;
always@(posedge clk or negedge rst_n)
if(!rst_n)
begin
state_cnt <= 0 ;
CKE <= 1 ;
CS_N <= 1 ;
RAS_N <= 1 ;
CAS_N <= 1 ;
WE_N <= 1 ;
BA <= 0 ;
SA <= 0 ;
DQM <= 0 ;
DQ_ctrl <= 1 ;//获取数据线的控制权
DQ_out <= 0 ;
end
else
begin
case(state)
nop1 : begin CS_N <= 1 ; end
nop2 : begin CS_N <= 0 ; RAS_N <= 1 ; CAS_N <= 1 ; WE_N <= 1 ; DQ_out <= write_data ;end
active: begin CS_N <= 0 ; RAS_N <= 0 ; CAS_N <= 1 ; WE_N <= 1 ; SA <= addr ; BA <= bank ;end
read : begin CS_N <= 0 ; RAS_N <= 1 ; CAS_N <= 0 ; WE_N <= 1 ; SA <= addr ; BA <= bank ; DQM <= dqm_ctrl ; DQ_ctrl <= 0 ; end
write : begin CS_N <= 0 ; RAS_N <= 1 ; CAS_N <= 0 ; WE_N <= 0 ; SA <= addr ; BA <= bank ; DQM <= dqm_ctrl ; DQ_out <= write_data ;end
precharge : begin CS_N <= 0 ; RAS_N <= 0 ; CAS_N <= 1 ; WE_N <= 0 ; SA[10] <= addr[10] ; BA <= bank ;DQ_ctrl <= 1 ; end//sa[10] = 1 :对所有bank预充电 ; sa[10] = 0 : 对ba1 ba0 选中的bank预充电
auto_refresh : begin CS_N <= 0 ; RAS_N <= 0 ; CAS_N <= 0 ; WE_N <= 1 ; CKE <= 1 ; end
self_refresh : begin CS_N <= 0 ; RAS_N <= 0 ; CAS_N <= 0 ; WE_N <= 1 ; CKE <= 0 ; end
load_mode_register : begin CS_N <= 0 ; RAS_N <= 0 ; CAS_N <= 0 ; WE_N <= 0 ; SA <= { 1'b0 , mode } ; end
default:;
endcase
end
endmodule
`timescale 1ns/1ns
module sdram_ctrl_tb();
reg fpga_clk ;
reg rst_n ;
reg write_sig ;
reg read_sig ;
reg [12:0]write_addr ;
reg [1:0] write_bank ;
reg [15:0]write_data ;
reg [12:0]read_addr ;
reg [1:0] read_bank ;
wire sclk ;
wire CKE ;
wire CS_N ;
wire RAS_N ;
wire CAS_N ;
wire WE_N ;
wire [1:0]DQM ;//高电平时屏蔽
wire [12:0]SA ;//A12 - A0
wire [1:0]BA ;
wire [15:0]DQ;
wire [15:0]read_data;
wire trans_done;
wire [3:0]cmd_state ;
sdram_ctrl sdram_ctrl_inst(
.fpga_clk(fpga_clk) ,
.rst_n(rst_n) ,
.write_sig(write_sig) ,
.read_sig(read_sig) ,
.write_addr(write_addr) ,
.write_bank(write_bank) ,
.write_data(write_data) ,
.read_addr(read_addr) ,
.read_bank(read_bank) ,
.trans_done(trans_done) ,
.read_data(read_data) ,
.sclk(sclk) ,
.CKE(CKE) ,
.CS_N(CS_N) ,
.RAS_N(RAS_N) ,
.CAS_N(CAS_N) ,
.WE_N(WE_N) ,
.DQM(DQM) ,
.SA(SA) ,
.BA(BA) ,
.DQ(DQ)
);
mt48lc16m16a2 mt48lc16m16a2_inst(
.Dq(DQ),
.Addr(SA),
.Ba(BA),
.Clk(sclk),
.Cke(CKE),
.Cs_n(CS_N),
.Ras_n(RAS_N),
.Cas_n(CAS_N),
.We_n(WE_N),
.Dqm(DQM)
);
pulldown(DQ[15]);
pulldown(DQ[14]);
pulldown(DQ[13]);
pulldown(DQ[12]);
pulldown(DQ[11]);
pulldown(DQ[10]);
pulldown(DQ[9]);
pulldown(DQ[8]);
pulldown(DQ[7]);
pulldown(DQ[6]);
pulldown(DQ[5]);
pulldown(DQ[4]);
pulldown(DQ[3]);
pulldown(DQ[2]);
pulldown(DQ[1]);
pulldown(DQ[0]);
assign cmd_state = {CS_N,RAS_N,CAS_N,WE_N} ;
initial fpga_clk = 0 ;
always #10 fpga_clk = !fpga_clk ;
initial begin
rst_n = 0 ;
write_sig = 0 ;
read_sig = 0 ;
write_addr = 0 ;
write_bank = 0 ;
write_data = 0 ;
read_addr = 0 ;
read_bank = 0 ;
#201 ;
rst_n = 1 ;
#102000;
#200 ;
write_addr = 13'd2 ;
write_bank = 2'd1;
write_data = 16'h5a5a ;
write_sig = 1;
#70;
write_data = 16'h5a5b ;
#10;
write_data = 16'h5a5c ;
#10;
write_data = 16'h5a5d ;
#200 ;
write_sig = 0;
#5000;
read_addr = 13'd2 ;
read_bank = 2'd1;
read_sig = 1 ;
#200 ;
read_sig = 0 ;
#10000;
$stop ;
end
endmodule
3.仿真
1.上点初始化
2.写数据(带自动预充电)
3.读数据(带自动预充电)
读出来的数据,DQ的最后一个数据只有7.6ns,不知道是什么原因。
但是移相适当仍然可以读取。
接下来对AC609板载的SDRAM:w9812g6kh进行设计,并进行板级验证。
三、型号w9812g6kh的sdram
通过查看w9812g6kh芯片的器件手册,发现它的读/写/充电/等命令设置均与MT48LC16M16A2的规则相同,只是这两个芯片容量不一样,w9812g6kh为128M,只有12个地址引脚,而MT48LC16M16A2为256M,有13个地址引脚。所以程序上只需要修改地址引脚即可。
为了上板验证程序的可行性,仿照IIC协议的测试方法,用uart-sdram联合测试,通过上位机发送读写数据来控制FPGA对w9812g6kh进行读写,此处仍需要建立通信帧,规则与IIC协议笔记差不多,如下:
//***************** ******************//
// 串口波特率:115200 //
// 通信帧格式: //
// AA AA HA LA RW DA DA 55 //
// 其中,AA AA 为帧头;55为帧尾; //
// HA、LA为存储器地址 //
// RW为读写控制,读:5A ;写:A5 //
// DA为要写入的数据,读的时候可为任意值 //
// ********************************* //
sdram的控制程序设置为BL=1的模式,(使用其他BL只需修改对应的线性序列机和模式寄存器即可)
1.代码设计
//***************** ******************//
// 串口波特率:115200 //
// 通信帧格式: //
// AA AA HA LA RW DA DA 55 //
// 其中,AA AA 为帧头;55为帧尾; //
// HA、LA为存储器地址 //
// RW为读写控制,读:5A ;写:A5 //
// DA为要写入的数据,读的时候可为任意值 //
// ********************************* //
module uart_sdram(
input fpga_clk ,
input rst_n ,
input uart_rx ,
output rx_done ,
output uart_tx ,
output sclk ,
output CKE ,
output CS_N ,
output RAS_N ,
output CAS_N ,
output WE_N ,
output [1:0]DQM ,//高电平时屏蔽
output [11:0]SA ,//A12 - A0
output [1:0]BA ,
inout [15:0]DQ
);
//receive uart data
//wire rx_done ;
wire [7:0]rx_data ;
uart_receive uart_rec_inst(
.clk(fpga_clk) ,
.reset(rst_n) ,
.baud_rate('d5) ,//115200
.uart_rx(uart_rx),
.data(rx_data) ,
.rx_done(rx_done)
);
//Shift register
reg [7:0]rec_shift_reg[7:0] ;
reg rw_flag ;
wire trans_done ;
always@(posedge fpga_clk or negedge rst_n)
if(!rst_n)
begin
rec_shift_reg[0] <= 0 ;
rec_shift_reg[1] <= 0 ;
rec_shift_reg[2] <= 0 ;
rec_shift_reg[3] <= 0 ;
rec_shift_reg[4] <= 0 ;
rec_shift_reg[5] <= 0 ;
rec_shift_reg[6] <= 0 ;
rec_shift_reg[7] <= 0 ;
rw_flag <= 0 ;
end
else if(rx_done)
begin
rec_shift_reg[0] <= rec_shift_reg[1] ;
rec_shift_reg[1] <= rec_shift_reg[2] ;
rec_shift_reg[2] <= rec_shift_reg[3] ;
rec_shift_reg[3] <= rec_shift_reg[4] ;
rec_shift_reg[4] <= rec_shift_reg[5] ;
rec_shift_reg[5] <= rec_shift_reg[6] ;
rec_shift_reg[6] <= rec_shift_reg[7] ;
rec_shift_reg[7] <= rx_data ;
rw_flag <= 1 ;
end
else if(trans_done)
rw_flag <= 0 ;
reg [15:0]write_addr ;
reg [15:0]read_addr ;
reg [15:0]write_data ;
reg [15:0]read_data ;
wire [15:0]rd_data ;
reg write_pulse ;
reg read_pulse ;
sdram_ctrl sdram_ctrl_inst(
.fpga_clk(fpga_clk) ,
.rst_n(rst_n) ,
.write_sig(write_pulse) ,
.read_sig(read_pulse) ,
.write_addr(write_addr[11:0]) ,
.write_bank(write_addr[15:14]) ,
.write_data(write_data) ,
.read_addr(read_addr[11:0]) ,
.read_bank(read_addr[15:14]) ,
.trans_done(trans_done) ,
.read_data(rd_data) ,
.sclk(sclk) ,
.CKE(CKE) ,
.CS_N(CS_N) ,
.RAS_N(RAS_N) ,
.CAS_N(CAS_N) ,
.WE_N(WE_N) ,
.DQM(DQM) ,//高电平时屏蔽
.SA(SA) ,//A12 - A0
.BA(BA) ,
.DQ(DQ)
);
wire uart_send_done ;
reg uart_send_en ;
uart_send uart_send(
.clk(fpga_clk),
.reset(rst_n),
.data(read_data[7:0]),
.send_en(uart_send_en),
.baud_rate(5),//115200
.uart_tx(uart_tx),
.tx_done(uart_send_done)
);
//Parsing frames
localparam frames_header = 8'hAA ;
localparam frames_tail = 8'h55 ;
localparam read_option = 8'h5A ;
localparam write_option = 8'hA5 ;
reg [15:0]wr_cnt ;
reg [15:0]rd_cnt ;
always@(posedge fpga_clk or negedge rst_n)
if(!rst_n)
begin
write_addr <= 0 ;
read_addr <= 0 ;
write_data <= 0;
read_data <= 0 ;
write_pulse <= 0 ;
read_pulse <= 0 ;
wr_cnt <= 0 ;
rd_cnt <= 0 ;
end
else if( rw_flag )
begin
if ( (rec_shift_reg[0] == frames_header) && (rec_shift_reg[1] == frames_header) && (rec_shift_reg[7] == frames_tail) )
begin
if(rec_shift_reg[4] == write_option )
begin
write_addr <= { rec_shift_reg[2] , rec_shift_reg[3] } ;
write_data <= {rec_shift_reg[5],rec_shift_reg[6]} ;
wr_cnt <= wr_cnt + 1 ;
//write signal
if( wr_cnt < 3 )
write_pulse <= 1 ;
else if(trans_done)
begin
wr_cnt <= 0 ;
end
else
write_pulse <= 0 ;
end
else if ( rec_shift_reg[4] == read_option )
begin
read_addr <= { rec_shift_reg[2] , rec_shift_reg[3] } ;
//read signal
rd_cnt <= rd_cnt + 1 ;
if(trans_done)
begin
read_data <= rd_data ;
read_pulse <= 0 ;
rd_cnt <= 0 ;
end
else if(rd_cnt <3)
read_pulse <= 1 ;
else
read_pulse <= 0 ;
end
end
end
else
begin
write_pulse <= 0 ;
read_pulse <= 0 ;
wr_cnt <= 0 ;
rd_cnt <= 0 ;
end
always@(posedge fpga_clk or negedge rst_n)
if(!rst_n)
uart_send_en <= 0 ;
else if(trans_done && (rec_shift_reg[4] == read_option) )
uart_send_en <= 1 ;
else if(uart_send_done)
uart_send_en <= 0 ;
endmodule
2.板级验证
fpga向sdram芯片写入数据16‘h1234,并返回低位8’h34。文章来源:https://www.toymoban.com/news/detail-719368.html
文章来源地址https://www.toymoban.com/news/detail-719368.html
到了这里,关于SDRAM学习笔记(MT48LC16M16A2,w9812g6kh)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!