完整依赖
<dependencies>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-core -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-core</artifactId>
<version>1.13.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.12</artifactId>
<version>1.13.0</version>
</dependency>
<!-- <dependency>-->
<!-- <groupId>org.apache.flink</groupId>-->
<!-- <artifactId>flink-jdbc_2.12</artifactId>-->
<!-- <version>1.10.3</version>-->
<!-- </dependency>-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-jdbc_2.12</artifactId>
<version>1.13.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>1.13.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.12</artifactId>
<version>1.13.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-api-java-bridge_2.12</artifactId>
<version>1.13.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-common</artifactId>
<version>1.13.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner_2.12</artifactId>
<version>1.13.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner-blink_2.12</artifactId>
<version>1.13.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner-blink_2.12</artifactId>
<version>1.13.0</version>
<type>test-jar</type>
</dependency>
<dependency>
<groupId>com.alibaba.ververica</groupId>
<artifactId>flink-connector-mysql-cdc</artifactId>
<version>1.4.0</version>
</dependency>
<dependency>
<groupId>com.aliyun</groupId>
<artifactId>flink-connector-clickhouse</artifactId>
<version>1.12.0</version>
</dependency>
<dependency>
<groupId>ru.yandex.clickhouse</groupId>
<artifactId>clickhouse-jdbc</artifactId>
<version>0.2.6</version>
</dependency>
<dependency>
<groupId>com.google.code.gson</groupId>
<artifactId>gson</artifactId>
<version>2.8.6</version>
</dependency>
</dependencies>
Flink CDC
package name.lijiaqi.cdc;
import com.alibaba.ververica.cdc.debezium.DebeziumDeserializationSchema;
import com.google.gson.Gson;
import com.google.gson.internal.LinkedTreeMap;
import io.debezium.data.Envelope;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import com.alibaba.ververica.cdc.connectors.mysql.MySQLSource;
import org.apache.flink.util.Collector;
import org.apache.kafka.connect.source.SourceRecord;
import org.apache.kafka.connect.data.Field;
import org.apache.kafka.connect.data.Schema;
import org.apache.kafka.connect.data.Struct;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.util.HashMap;
public class MySqlBinlogSourceExample {
public static void main(String[] args) throws Exception {
SourceFunction<String> sourceFunction = MySQLSource.<String>builder()
.hostname("localhost")
.port(3306)
.databaseList("test")
.username("flinkcdc")
.password("dafei1288")
.deserializer(new JsonDebeziumDeserializationSchema())
.build();
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 添加 source
env.addSource(sourceFunction)
// 添加 sink
.addSink(new ClickhouseSink());
env.execute("mysql2clickhouse");
}
// 将cdc数据反序列化
public static class JsonDebeziumDeserializationSchema implements DebeziumDeserializationSchema {
@Override
public void deserialize(SourceRecord sourceRecord, Collector collector) throws Exception {
Gson jsstr = new Gson();
HashMap<String, Object> hs = new HashMap<>();
String topic = sourceRecord.topic();
String[] split = topic.split("[.]");
String database = split[1];
String table = split[2];
hs.put("database",database);
hs.put("table",table);
//获取操作类型
Envelope.Operation operation = Envelope.operationFor(sourceRecord);
//获取数据本身
Struct struct = (Struct)sourceRecord.value();
Struct after = struct.getStruct("after");
if (after != null) {
Schema schema = after.schema();
HashMap<String, Object> afhs = new HashMap<>();
for (Field field : schema.fields()) {
afhs.put(field.name(), after.get(field.name()));
}
hs.put("data",afhs);
}
String type = operation.toString().toLowerCase();
if ("create".equals(type)) {
type = "insert";
}
hs.put("type",type);
collector.collect(jsstr.toJson(hs));
}
@Override
public TypeInformation<String> getProducedType() {
return BasicTypeInfo.STRING_TYPE_INFO;
}
}
public static class ClickhouseSink extends RichSinkFunction<String>{
Connection connection;
PreparedStatement pstmt;
private Connection getConnection() {
Connection conn = null;
try {
Class.forName("ru.yandex.clickhouse.ClickHouseDriver");
String url = "jdbc:clickhouse://localhost:8123/default";
conn = DriverManager.getConnection(url,"default","dafei1288");
} catch (Exception e) {
e.printStackTrace();
}
return conn;
}
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
connection = getConnection();
String sql = "insert into sink_ch_test(id,name,description) values (?,?,?)";
pstmt = connection.prepareStatement(sql);
}
// 每条记录插入时调用一次
public void invoke(String value, Context context) throws Exception {
//{"database":"test","data":{"name":"jacky","description":"fffff","id":8},"type":"insert","table":"test_cdc"}
Gson t = new Gson();
HashMap<String,Object> hs = t.fromJson(value,HashMap.class);
String database = (String)hs.get("database");
String table = (String)hs.get("table");
String type = (String)hs.get("type");
if("test".equals(database) && "test_cdc".equals(table)){
if("insert".equals(type)){
System.out.println("insert => "+value);
LinkedTreeMap<String,Object> data = (LinkedTreeMap<String,Object>)hs.get("data");
String name = (String)data.get("name");
String description = (String)data.get("description");
Double id = (Double)data.get("id");
// 未前面的占位符赋值
pstmt.setInt(1, id.intValue());
pstmt.setString(2, name);
pstmt.setString(3, description);
pstmt.executeUpdate();
}
}
}
@Override
public void close() throws Exception {
super.close();
if(pstmt != null) {
pstmt.close();
}
if(connection != null) {
connection.close();
}
}
}
}
Flink SQL CDC
package name.lijiaqi.cdc;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.SqlDialect;
import org.apache.flink.table.api.TableResult;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
public class MysqlToMysqlMain {
public static void main(String[] args) throws Exception {
EnvironmentSettings fsSettings = EnvironmentSettings.newInstance()
.useBlinkPlanner()
.inStreamingMode()
.build();
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, fsSettings);
tableEnv.getConfig().setSqlDialect(SqlDialect.DEFAULT);
// 数据源表
String sourceDDL =
"CREATE TABLE mysql_binlog (\n" +
" id INT NOT NULL,\n" +
" name STRING,\n" +
" description STRING\n" +
") WITH (\n" +
" 'connector' = 'mysql-cdc',\n" +
" 'hostname' = 'localhost',\n" +
" 'port' = '3306',\n" +
" 'username' = 'flinkcdc',\n" +
" 'password' = 'dafei1288',\n" +
" 'database-name' = 'test',\n" +
" 'table-name' = 'test_cdc'\n" +
")";
String url = "jdbc:mysql://127.0.0.1:3306/test";
String userName = "root";
String password = "dafei1288";
String mysqlSinkTable = "test_cdc_sink";
// 输出目标表
String sinkDDL =
"CREATE TABLE test_cdc_sink (\n" +
" id INT NOT NULL,\n" +
" name STRING,\n" +
" description STRING,\n" +
" PRIMARY KEY (id) NOT ENFORCED \n " +
") WITH (\n" +
" 'connector' = 'jdbc',\n" +
" 'driver' = 'com.mysql.jdbc.Driver',\n" +
" 'url' = '" + url + "',\n" +
" 'username' = '" + userName + "',\n" +
" 'password' = '" + password + "',\n" +
" 'table-name' = '" + mysqlSinkTable + "'\n" +
")";
// 简单的聚合处理
String transformSQL =
"insert into test_cdc_sink select * from mysql_binlog";
tableEnv.executeSql(sourceDDL);
tableEnv.executeSql(sinkDDL);
TableResult result = tableEnv.executeSql(transformSQL);
// 等待flink-cdc完成快照
result.print();
env.execute("sync-flink-cdc");
}
}
文章来源地址https://www.toymoban.com/news/detail-719372.html
文章来源:https://www.toymoban.com/news/detail-719372.html
到了这里,关于FlinkCDC for mysql to Clickhouse的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!