线性代数(七) 矩阵分析

这篇具有很好参考价值的文章主要介绍了线性代数(七) 矩阵分析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

从性线变换我们得出,矩阵和函数是密不可分的。如何用函数的思维来分析矩阵。

矩阵的序列

线性代数(七) 矩阵分析,# 数学基础,线性代数,矩阵
通过这个定义我们就定义了矩阵序列的收敛性
线性代数(七) 矩阵分析,# 数学基础,线性代数,矩阵
研究矩阵序列收敛性的常用方法,是用《常见向量范数和矩阵范数》来研究矩阵序列的极限。

长度是范数的一个特例。事实上,Frobenius范数对应的就是长度。我们在线性空间中定义内积时,就是把这三条性质作为公理来定义内积的
线性代数(七) 矩阵分析,# 数学基础,线性代数,矩阵

收敛矩阵

在矩阵序列中,最常见的是由一个方阵的幂构成的序列,关于这样的矩阵序列有如下概念和收敛定理:
线性代数(七) 矩阵分析,# 数学基础,线性代数,矩阵
r(A)是谱半径是一个矩阵的特征值绝对值中的最大值,用于描述矩阵的特征值的尺度大小。

矩阵级数

线性代数(七) 矩阵分析,# 数学基础,线性代数,矩阵
线性代数(七) 矩阵分析,# 数学基础,线性代数,矩阵

矩阵幂级数

线性代数(七) 矩阵分析,# 数学基础,线性代数,矩阵

  1. 根据幂级数收敛半径定理求出收敛半径r
  2. 根据《常见向量范数和矩阵范数》将矩阵A量化,看否在收敛区间中

线性代数(七) 矩阵分析,# 数学基础,线性代数,矩阵

  • a k = k = > r = lim ⁡ k → ∞ | a k + 1 a k | = | k + 1 k | = 1 a_k= k => r= \lim\limits_{k \to \infty} |\dfrac{a_{k+1}}{a_k}|=|\dfrac{{k+1}}{k}|= 1 ak=k=>r=klimakak+1=kk+1=1
  • 由范式2得到 p ( A ) = 5 6 p(A)=\dfrac{5}{6} p(A)=65

Neumann级数

线性代数(七) 矩阵分析,# 数学基础,线性代数,矩阵
线性代数(七) 矩阵分析,# 数学基础,线性代数,矩阵

  • 注1:假设E-A不可逆,那么E-A有0特征值,A的特征值为1。而A的谱半径小于1,矛盾,故E-A可逆
  • 注2:A的谱半径小于1,由定理3可知A为收敛矩阵。那么 A k + 1 A^{k+1} Ak+1 就趋近于0(k趋于无穷)
    线性代数(七) 矩阵分析,# 数学基础,线性代数,矩阵

矩阵函数

线性代数(七) 矩阵分析,# 数学基础,线性代数,矩阵

矩阵函数的计算

常用的有以下几种方法

待定系数法
  • 求矩阵A的特征多项式 ∣ λ I − A ∣ |\lambda I - A| λIA
  • 利用Hamilton-Cayley定理,求出A的一次性化零多项式 ψ ( A ) = 0 \psi(A)=0 ψ(A)=0线性代数(七) 矩阵分析,# 数学基础,线性代数,矩阵 - 求解 f ( A ) f(A) f(A)多项式线性代数(七) 矩阵分析,# 数学基础,线性代数,矩阵线性代数(七) 矩阵分析,# 数学基础,线性代数,矩阵
  • A = λ ,即 ψ ( A ) = f ( A ) A=\lambda, 即\psi(A)=f(A) A=λ,即ψ(A)=f(A)线性代数(七) 矩阵分析,# 数学基础,线性代数,矩阵
  • sin的导注是cos
  • e x e^x ex的导数是它本身的导数,因此, e ( 2 t ) 的导数是 2 e ( 2 t ) e^(2t) 的导数是 2e^(2t) e(2t)的导数是2e(2t)
利用相似对角化线性代数(七) 矩阵分析,# 数学基础,线性代数,矩阵
利用Jordan标准形线性代数(七) 矩阵分析,# 数学基础,线性代数,矩阵

主要参考

《常见向量范数和矩阵范数》
《矩阵分析》
《7.2.3幂级数收敛半径定理》
《矩阵序列与矩阵级数》
《矩阵函数的常见求法》文章来源地址https://www.toymoban.com/news/detail-719478.html

到了这里,关于线性代数(七) 矩阵分析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 自动编码器的数学基础:概率论与线性代数

    自动编码器(Autoencoders)是一种深度学习模型,它通过学习压缩输入数据的低维表示,然后再将其重新解码为原始数据形式。自动编码器的主要目的是学习数据的特征表示,从而可以用于降维、生成新数据、数据压缩等应用。在这篇文章中,我们将讨论自动编码器的数学基础,

    2024年02月20日
    浏览(48)
  • 人工智能中数学基础:线性代数,解析几何和微积分

    在人工智能领域,线性代数、解析几何和微积分是最基础的数学知识。这些数学知识不仅在人工智能领域中被广泛应用,也是其他领域的重要基础。本文将介绍人工智能中的线性代数、解析几何和微积分的基础知识和应用。

    2024年02月16日
    浏览(51)
  • AI人工智能中的数学基础原理与Python实战: 线性代数基础概述

    随着人工智能技术的不断发展,人工智能已经成为了许多行业的核心技术之一。在人工智能领域中,数学是一个非常重要的基础。线性代数是数学中的一个重要分支,它在人工智能中发挥着至关重要的作用。本文将介绍线性代数的基本概念、算法原理、具体操作步骤以及数学

    2024年04月12日
    浏览(66)
  • 计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习

    目录 1. 中值定理 2. 梯度和散度 方向导数和梯度 通量与散度 3. 泰勒公式是为了解决什么问题的? 4. 矩阵的秩是什么,矩阵的秩物理意义? 矩阵的秩 矩阵秩的物理意义 5. 特征值和特征向量的概念 5.1 传统方法 例题 5.2 雅可比迭代法 6. 什么是线性相关以及线性相关的性质?

    2024年02月16日
    浏览(44)
  • 【学习笔记】(数学)线性代数-矩阵的概念和特殊矩阵

    由 m × n mtimes n m × n 个数按一定的次序排成的 m m m 行 n n n 列的矩形数表成为 m × n mtimes n m × n 的矩阵,简称 矩阵 (matrix)。 横的各排称为矩阵的 行 ,竖的各列称为矩阵的 列 。 元素为实数的称为 实矩阵 ,一般情况下我们所讨论的矩阵均为实矩阵。 1 行 n n n 列的矩阵称为

    2024年02月09日
    浏览(45)
  • 考研数学笔记:线性代数中抽象矩阵性质汇总

    在考研线性代数这门课中,对抽象矩阵(矩阵 A A A 和矩阵 B B B 这样的矩阵)的考察几乎贯穿始终,涉及了很多性质、运算规律等内容,在这篇考研数学笔记中,我们汇总了几乎所有考研数学要用到的抽象矩阵的性质,详情在这里: 线性代数抽象矩阵(块矩阵)运算规则(性

    2024年02月03日
    浏览(51)
  • 线性代数(七) 矩阵分析

    从性线变换我们得出,矩阵和函数是密不可分的。如何用函数的思维来分析矩阵。 通过这个定义我们就定义了矩阵序列的 收敛性 。 研究矩阵序列收敛性的常用方法,是用《常见向量范数和矩阵范数》来研究矩阵序列的极限。 长度是范数的一个特例。事实上,Frobenius范数对

    2024年02月08日
    浏览(49)
  • d3d12龙书阅读----数学基础 向量代数、矩阵代数、变换

    d3d12龙书阅读----数学基础 向量代数、矩阵代数、变换 directx 采用左手坐标系 点积与叉积 点积与叉积的正交化 使用点积进行正交化 使用叉积进行正交化 矩阵与矩阵乘法 转置矩阵 单位矩阵 逆矩阵 矩阵行列式 变换 旋转矩阵 坐标变换 利用DirectXMath库进行向量运算、矩阵运算以

    2024年02月19日
    浏览(48)
  • 线性代数基础【2】矩阵

    一、基本概念 ①矩阵 像如下图示的为矩阵,记为A=(aij)m*n ②同型矩阵及矩阵相等 若A、B为如下两个矩阵 如果A和B的行数和列数相等,那么A和B为同型矩阵,且A和B的元素相等(即:aij=bij),则称A和B相等 ③伴随矩阵 设A为n阶矩阵(如上图所示),设A的行列式|A|,则A中aij的余子式为Mij,代数余

    2024年02月04日
    浏览(52)
  • 线性代数基础--矩阵

     矩阵是由排列在矩形阵列中的数字或其他数学对象组成的表格结构。它由行和列组成,并且在数学和应用领域中广泛使用。 元素:矩阵中的每个数字称为元素。元素可以是实数、复数或其他数学对象。 维度:矩阵的维度表示矩阵的行数和列数。一个 m × n 的矩阵有 m 行和

    2024年02月11日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包