你有没有想过用python制作一个Minecraft?在github上就有这样一个python程序(链接:https://github.com/zifan-wang/Minecraft.git),玩起来还像模像样的:
一.游戏截图
二.代码分析
在游戏的文件夹中共有这些文件:
1.main.py
代码:(如有需要可复制,不需要可直接跳过)
import sys
import random
import time
import numba as nb
import threading
from collections import deque
from pyglet import image
from pyglet.gl import *
from pyglet.graphics import TextureGroup
from pyglet.window import key, mouse
from settings import *
SEED = random.randint(10, 1000000)#656795(种子"akioi") # 世界种子
print('seed:', SEED)
def cube_vertices(x, y, z, n):
# 返回立方体的顶点,大小为2n。
return [
x-n,y+n,z-n, x-n,y+n,z+n, x+n,y+n,z+n, x+n,y+n,z-n, # top
x-n,y-n,z-n, x+n,y-n,z-n, x+n,y-n,z+n, x-n,y-n,z+n, # bottom
x-n,y-n,z-n, x-n,y-n,z+n, x-n,y+n,z+n, x-n,y+n,z-n, # left
x+n,y-n,z+n, x+n,y-n,z-n, x+n,y+n,z-n, x+n,y+n,z+n, # right
x-n,y-n,z+n, x+n,y-n,z+n, x+n,y+n,z+n, x-n,y+n,z+n, # front
x+n,y-n,z-n, x-n,y-n,z-n, x-n,y+n,z-n, x+n,y+n,z-n, # back
]
def tex_coord(x, y, n=8):
# 返回纹理的边界顶点。
m = 1.0 / n
dx = x * m
dy = y * m
return dx, dy, dx + m, dy, dx + m, dy + m, dx, dy + m
def tex_coords(top, bottom, side):
# 返回顶部、底部和侧面的纹理列表。
top = tex_coord(*top)
bottom = tex_coord(*bottom)
side = tex_coord(*side)
result = []
result.extend(top)
result.extend(bottom)
result.extend(side * 4)
return result
GRASS = tex_coords((1, 0), (0, 1), (0, 0))
SNOW = tex_coords((4, 0), (0, 1), (1, 3))
SAND = tex_coords((1, 1), (1, 1), (1, 1))
DIRT = tex_coords((0, 1), (0, 1), (0, 1))
STONE = tex_coords((2, 0), (2, 0), (2, 0))
ENDSTONE = tex_coords((2, 1), (2, 1), (2, 1))
WATER = tex_coords((0, 4), (0, 4), (0, 4))
ICE = tex_coords((3, 1), (3, 1), (3, 1))
WOOD = tex_coords((0, 2), (0, 2), (3, 0))
LEAF = tex_coords((0, 3), (0, 3), (0, 3))
BRICK = tex_coords((1, 2), (1, 2), (1, 2))
PUMKEY = tex_coords((2, 2), (3, 3), (2, 3))
MELON = tex_coords((2, 4), (2, 4), (1, 4))
CLOUD = tex_coords((3, 2), (3, 2), (3, 2))
TNT = tex_coords((4, 2), (4, 3), (4, 1))
DIMO = tex_coords((3, 4), (3, 4), (3, 4))
IRNO = tex_coords((4, 4), (4, 4), (4, 4))
COAL = tex_coords((5, 0), (5, 0), (5, 0))
GOLDO = tex_coords((5, 1), (5, 1), (5, 1))
# 立方体的6个面
FACES = [
( 0, 1, 0),
( 0,-1, 0),
(-1, 0, 0),
( 1, 0, 0),
( 0, 0, 1),
( 0, 0,-1),
]
random.seed(SEED)
def normalize(position):
# 将三维坐标'position'的x、y、z取近似值
x, y, z = position
x, y, z = (round(x), round(y), round(z))
return (x, y, z)
def sectorize(position):
x, y, z = normalize(position)
x, y, z = x // SECTOR_SIZE, y // SECTOR_SIZE, z // SECTOR_SIZE
return (x, 0, z)
persistence = round(random.uniform(0.25, 0.45), 6)
Number_Of_Octaves = random.randint(3, 5)
PMAGN = persistence * 16
HAMPL = 8
threads = deque() # 多线程队列
@nb.jit(nopython=True, fastmath=True)
def Noise(x, y):
n = x + y * 57
n = (n * 8192) ^ n
return ( 1.0 - ( (n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0)
@nb.jit(nopython=True, fastmath=True)
def SmoothedNoise(x, y):
corners = ( Noise(x-1, y-1)+Noise(x+1, y-1)+Noise(x-1, y+1)+Noise(x+1, y+1) ) / 16
sides = ( Noise(x-1, y) +Noise(x+1, y) +Noise(x, y-1) +Noise(x, y+1) ) / 8
center = Noise(x, y) / 4
return corners + sides + center
@nb.jit(nopython=True, fastmath=True)
def Cosine_Interpolate(a, b, x):
ft = x * 3.1415927
f = (1 - math.cos(ft)) * 0.5
return a*(1-f) + b*f
@nb.jit(nopython=True, fastmath=True)
def Linear_Interpolate(a, b, x):
return a*(1-x) + b*x
def InterpolatedNoise(x, y):
integer_X = int(x)
fractional_X = x - integer_X
integer_Y = int(y)
fractional_Y = y - integer_Y
v1 = SmoothedNoise(integer_X, integer_Y)
v2 = SmoothedNoise(integer_X + 1, integer_Y)
v3 = SmoothedNoise(integer_X, integer_Y + 1)
v4 = SmoothedNoise(integer_X + 1, integer_Y + 1)
i1 = Cosine_Interpolate(v1, v2, fractional_X)
i2 = Cosine_Interpolate(v3, v4, fractional_X)
return Cosine_Interpolate(i1, i2, fractional_Y)
def PerlinNoise(x, y):
x = abs(x)
y = abs(y)
noise = 0
p = persistence
n = Number_Of_Octaves
for i in range(n):
frequency = pow(2,i)
amplitude = pow(p,i)
noise = noise + InterpolatedNoise(x * frequency, y * frequency) * amplitude
return noise
class mbatch:
def __init__(self):
self.batch = {}
def add(self, x, z, *args):
x = int(x / 64) * 64
z = int(z / 64) * 64
if (x, z) not in self.batch:
self.batch[(x, z)] = pyglet.graphics.Batch()
return self.batch[(x, z)].add(*args)
def draw(self, dx, dz):
dx = int(dx / 64) * 64
dz = int(dz / 64) * 64
for ax, az in DNRC:
x = dx + ax
z = dz + az
if (x, z) in self.batch:
self.batch[(x, z)].draw()
class Model(object):
def __init__(self):
self.batch = mbatch() #pyglet.graphics.Batch()
self.group = TextureGroup(image.load(TEXTURE_PATH).get_texture()) # 纹理列表
self.world = {} # 地图
self.shown = {} # 显示的方块
self._shown = {} # 显示的纹理
self.pool = {} # 水池
self.sectors = {}
self.areat = {}
self.queue = deque() # 指令队列
print("Loading...")
self.dfy = self._initialize()
print("OK")
def tree(self, y, x, z, flag=True):
# 生成树
th = random.randint(4, 6)
ts = random.randint(th // 2, 4)
if flag:
for i in range(y, y + th):
self.add_block((x, i, z), WOOD)
for dy in range(y + th, y + th + 2):
for dx in range(x - ts, x + ts + 1):
for dz in range(z - ts, z + ts + 1):
self.add_block((dx, dy, dz), LEAF)
for dy in range(y + th + 2, y + th + ts + 2):
ts -= 1
for dx in range(x - ts, x + ts + 1):
for dz in range(z - ts, z + ts + 1):
self.add_block((dx, dy, dz), LEAF)
else:
for i in range(y, y + th):
self._enqueue(self.add_block, (x, i, z), WOOD)
for dy in range(y + th, y + th + 2):
for dx in range(x - ts, x + ts + 1):
for dz in range(z - ts, z + ts + 1):
self._enqueue(self.add_block, (dx, dy, dz), LEAF)
for dy in range(y + th + 2, y + th + ts + 2):
ts -= 1
for dx in range(x - ts, x + ts + 1):
for dz in range(z - ts, z + ts + 1):
self._enqueue(self.add_block, (dx, dy, dz), LEAF)
def _initialize(self):
# 初始化世界
hl = WORLDLEN // 2
mn = 0
gmap = [[0 for x in range(0, WORLDLEN)]for z in range(0, WORLDLEN)]
for x in range(-hl, hl):
for z in range(-hl, hl):
gmap[x][z] += round(PerlinNoise(x / PMAGN, z / PMAGN) * HAMPL)
mn = min(mn, gmap[x][z])
mn = abs(mn)
self.mn = mn
for x in range(-hl, hl):
for z in range(-hl, hl):
self.areat[(int(x / BASELEN) * BASELEN, int(z / BASELEN) * BASELEN)] = 1
gmap[x][z] += mn
if gmap[x][z] < 2:
self.add_block((x, -1, z), random.choice([SAND, STONE]))
self.pool[(x, 0, z)] = 1
self._show_block((x, 0, z), WATER)
self.pool[(x, 1, z)] = 1
self._show_block((x, 1, z), WATER)
else:
for y in range(-1, gmap[x][z]):
if y < 2:
self.add_block((x, y, z), random.choice([STONE, STONE, STONE, DIMO, IRNO, COAL, IRNO, COAL, GOLDO, STONE, STONE, STONE]))
else:
self.add_block((x, y, z), DIRT)
self.add_block((x, gmap[x][z], z), GRASS)
self.add_block((x, -2, z), ENDSTONE)
for x in range(-hl, hl, 4):
for z in range(-hl, hl, 4):
if x == 0 and z == 0:
continue
if random.randint(0, 3) == 1 and gmap[x][z] > 1:
self.tree(gmap[x][z] + 1, x, z)
for i in range(x, x + 4):
for j in range(z, z + 4):
self._show_block((i, 30, j), CLOUD)
elif random.randint(0, 4) == 2 and gmap[x][z] > 2:
self.add_block((x, gmap[x][z] + 1, z), random.choice([PUMKEY, MELON]))
return gmap[0][0] + 2
def initpart(self, dx, dz):
gmap = [[0 for x in range(0, WORLDLEN)]for z in range(0, WORLDLEN)]
if self.areat[(dx, dz)] < 3:
HAMPL = 8
elif self.areat[(dx, dz)] == 3:
HAMPL = 48
else:
HAMPL = 56
for x in range(0, BASELEN):
for z in range(0, BASELEN):
gmap[x][z] += round(PerlinNoise((x + dx) / PMAGN, (z + dz) / PMAGN) * HAMPL)
mode = self.areat[(dx, dz)]
for x in range(0, BASELEN):
for z in range(0, BASELEN):
gmap[x][z] += self.mn
xx = x + dx
zz = z + dz
if gmap[x][z] < 2:
self._enqueue(self.add_block, (xx, -1, zz), random.choice([SAND, STONE]))
if mode != 1:
self._enqueue(self.add_block, (xx, 0, zz), ICE)
self._enqueue(self.add_block, (xx, 1, zz), ICE)
else:
self.pool[(xx, 0, zz)] = 1
self._enqueue(self._show_block, (xx, 0, zz), WATER)
self.pool[(xx, 1, zz)] = 1
self._enqueue(self._show_block, (xx, 1, zz), WATER)
else:
for y in range(-1, gmap[x][z]):
if y < 2:
self._enqueue(self.add_block, (xx, y, zz), random.choice([STONE, STONE, STONE, DIMO, IRNO, COAL, IRNO, COAL, GOLDO, STONE, STONE, STONE]))
else:
if HAMPL > 16:
self._enqueue(self.add_block, (xx, y, zz), random.choice([STONE, STONE, STONE, COAL, STONE, STONE, STONE]))
else:
self._enqueue(self.add_block, (xx, y, zz), DIRT)
self._enqueue(self.add_block, (xx, gmap[x][z], zz), GRASS if mode == 1 else SNOW)
self._enqueue(self.add_block, (xx, -2, zz), ENDSTONE)
for x in range(0, BASELEN, 4):
for z in range(0, BASELEN, 4):
xx = x + dx
zz = z + dz
if random.randint(0, 3) == 1 and gmap[x][z] > 1:
self.tree(gmap[x][z] + 1, xx, zz, False)
for i in range(xx, xx + 4):
for j in range(zz, zz + 4):
self._enqueue(self._show_block, (i, 30, j), CLOUD)
elif random.randint(0, 4) == 2 and gmap[x][z] > 2:
self._enqueue(self.add_block, (xx, gmap[x][z] + 1, zz), random.choice([PUMKEY, MELON]))
def hit_test(self, position, vector, max_distance=8):
m = 8
x, y, z = position
dx, dy, dz = vector
previous = None
for _ in range(max_distance * m):
key = normalize((x, y, z))
if key != previous and key in self.world:
return key, previous
previous = key
x, y, z = x + dx / m, y + dy / m, z + dz / m
return None, None
def exposed(self, position):
x, y, z = position
for dx, dy, dz in FACES:
if (x + dx, y + dy, z + dz) not in self.world:
return True
return False
def add_block(self, position, texture, immediate=True):
if position in self.world:
self.remove_block(position, immediate)
self.world[position] = texture
self.sectors.setdefault(sectorize(position), []).append(position)
if immediate:
if self.exposed(position):# 如果看不见就不显示
self.show_block(position)
self.check_neighbors(position)
def remove_block(self, position, immediate=True):
del self.world[position]
self.sectors[sectorize(position)].remove(position)
if immediate:
if position in self.shown:
self.hide_block(position)
self.check_neighbors(position)
def check_neighbors(self, position):
x, y, z = position
for dx, dy, dz in FACES:
key = (x + dx, y + dy, z + dz)
if key not in self.world:
continue
if self.exposed(key):# 方块周围看到的显示看不到的隐藏
if key not in self.shown:
self.show_block(key)
else:
if key in self.shown:
self.hide_block(key)
def show_block(self, position, immediate=True):
texture = self.world[position]
self.shown[position] = texture
if immediate:
self._show_block(position, texture)
else:
self._enqueue(self._show_block, position, texture)
def _show_block(self, position, texture):
x, y, z = position
vertex_data = cube_vertices(x, y, z, 0.5)
texture_data = list(texture)
self._shown[position] = self.batch.add(x, z, 24, GL_QUADS, self.group,
('v3f/static', vertex_data),
('t2f/static', texture_data))
def hide_block(self, position, immediate=True):
self.shown.pop(position)
if immediate:
self._hide_block(position)
else:
self._enqueue(self._hide_block, position)
def _hide_block(self, position):
self._shown.pop(position).delete()
def show_sector(self, sector):
for position in self.sectors.get(sector, []):
if position not in self.shown and self.exposed(position):
self.show_block(position, False)
def hide_sector(self, sector):
for position in self.sectors.get(sector, []):
if position in self.shown:
self.hide_block(position, False)
def change_sectors(self, before, after):
before_set = set()
after_set = set()
pad = 4
for dx in range(-pad, pad + 1):
for dy in [0]:
for dz in range(-pad, pad + 1):
if dx ** 2 + dy ** 2 + dz ** 2 > (pad + 1) ** 2:
continue
if before:
x, y, z = before
before_set.add((x + dx, y + dy, z + dz))
if after:
x, y, z = after
after_set.add((x + dx, y + dy, z + dz))
show = after_set - before_set
hide = before_set - after_set
for sector in show:
self.show_sector(sector)
for sector in hide:
self.hide_sector(sector)
def _enqueue(self, func, *args):
self.queue.append((func, args))
def _dequeue(self):
func, args = self.queue.popleft()
func(*args)
def process_queue(self):
start = time.perf_counter()
while threads and time.perf_counter() - start < 0.9 / TICKS_PER_SEC:
threading.Thread(target=self.initpart, args=threads.popleft()).start()
while self.queue and time.perf_counter() - start < 0.9 / TICKS_PER_SEC:
self._dequeue()
def process_entire_queue(self):
while self.queue:
self._dequeue()
class Window(pyglet.window.Window):
def __init__(self, *args, **kwargs):
super(Window, self).__init__(*args, **kwargs)
self.exclusive = False
self.flying = False # 是否在飞行
self.swimming = False # 是否在游泳
self.walking = True # 是否在走路
self.jumping = False # 是否在跳
self.model = Model()
self.strafe = [0, 0]
self.position = (0, self.model.dfy, 0)
self.rotation = (0, 0)
self.sector = None
self.reticle = None
self.dy = 0
self.pw = False
self.pa = False
self.ps = False
self.pd = False
self.inventory = [GRASS, DIRT, STONE, SAND, WOOD, BRICK, PUMKEY, MELON, TNT]
self.block = self.inventory[0]
self.num_keys = [
key._1, key._2, key._3, key._4, key._5,
key._6, key._7, key._8, key._9, key._0]
self.label = pyglet.text.Label('', font_name='Arial', font_size=18,
x=10, y=self.height - 10, anchor_x='left', anchor_y='top',
color=(0, 0, 0, 255))
pyglet.clock.schedule_interval(self.update, 1.0 / TICKS_PER_SEC)
def set_exclusive_mouse(self, exclusive):
super(Window, self).set_exclusive_mouse(exclusive)
self.exclusive = exclusive
def get_sight_vector(self):
x, y = self.rotation
m = math.cos(math.radians(y))
dy = math.sin(math.radians(y))
dx = math.cos(math.radians(x - 90)) * m
dz = math.sin(math.radians(x - 90)) * m
return (dx, dy, dz)
def get_motion_vector(self):
if any(self.strafe):
x, y = self.rotation
strafe = math.degrees(math.atan2(*self.strafe))
y_angle = math.radians(y)
x_angle = math.radians(x + strafe)
if self.flying or self.swimming:
m = math.cos(y_angle)
dy = math.sin(y_angle)
if self.strafe[1]:
dy = 0.0
m = 1
if self.strafe[0] > 0:
dy *= -1
dx = math.cos(x_angle) * m
dz = math.sin(x_angle) * m
else:
dy = 0.0
dx = math.cos(x_angle)
dz = math.sin(x_angle)
else:
dy = 0.0
dx = 0.0
dz = 0.0
return (dx, dy, dz)
def update(self, dt):
# 刷新
global GTIME
global GNIGHT
global GDAY
glClearColor(0.5 - GTIME * 0.01, 0.69 - GTIME * 0.01, 1.0 - GTIME * 0.01, 1)
setup_fog()
GTIME += GDAY if GTIME < 23 else GNIGHT
if GTIME > 50:
GTIME = 50
GNIGHT = -GNIGHT
GDAY = -GDAY
elif GTIME < 0:
GTIME = 0
GNIGHT = -GNIGHT
GDAY = -GDAY
self.model.process_queue()
sector = sectorize(self.position)
if sector != self.sector:
self.model.change_sectors(self.sector, sector)
if self.sector is None:
self.model.process_entire_queue()
self.sector = sector
x, y, z = self.position
flag = False
for i in range(0, PLAYER_HEIGHT):
if normalize((x, y - i, z)) in self.model.pool:
flag = True
break
self.swimming = flag
dx = int(self.position[0] / BASELEN) * BASELEN
dz = int(self.position[2] / BASELEN) * BASELEN
for ax, az in NRC:
x = dx + ax
z = dz + az
if (x, z) not in self.model.areat:
if random.randint(0, 3):
self.model.areat[(x, z)] = 1
elif random.randint(0, 3):
self.model.areat[(x, z)] = 2
else:
self.model.areat[(x, z)] = 3
if round(PerlinNoise(x / PMAGN, z / PMAGN) * 8) + self.model.mn < 2:
self.model.areat[(x, z)] = 1
for i in range(-1, 2):
if self.model.areat[(x, z)] != 1:
break
for j in range(-1, 2):
if (x + i * BASELEN, z + j * BASELEN) in self.model.areat and self.model.areat[(x + i * BASELEN, z + j * BASELEN)] == 2 and random.randint(0, 2) == 0:
self.model.areat[(x, z)] = 2
break
for i in range(-1, 2):
if self.model.areat[(x, z)] > 2:
break
for j in range(-1, 2):
if (x + i * BASELEN, z + j * BASELEN) in self.model.areat and self.model.areat[(x + i * BASELEN, z + j * BASELEN)] == 3:
self.model.areat[(x, z)] = 4
break
threads.append((x, z))
m = 8
dt = min(dt, 0.2)
if self.jumping:
if self.dy == 0:
self.dy = JUMP_SPEED
for _ in range(m):
self._update(dt / m)
def _update(self, dt):
speed = FLYING_SPEED if self.flying else WALKING_SPEED if self.walking else RUNNING_SPEED
if self.swimming:
speed = SWIMMING_SPEED
d = dt * speed
dx, dy, dz = self.get_motion_vector()
dx, dy, dz = dx * d, dy * d, dz * d
if not self.flying and not self.swimming:
self.dy -= dt * GRAVITY
self.dy = max(self.dy, -TERMINAL_VELOCITY)
dy += self.dy * dt
x, y, z = self.position
x, y, z = self.collide((x + dx, y + dy, z + dz), PLAYER_HEIGHT)
self.position = (x, y, z)
def collide(self, position, height):
pad = 0.25
p = list(position)
np = normalize(position)
for face in FACES:
for i in range(3):
if not face[i]:
continue
d = (p[i] - np[i]) * face[i]
if d < pad:
continue
for dy in range(height):
op = list(np)
op[1] -= dy
op[i] += face[i]
if tuple(op) not in self.model.world:
continue
p[i] -= (d - pad) * face[i]
if face == (0, -1, 0) or face == (0, 1, 0):
self.dy = 0
break
return tuple(p)
def TNTboom(self, dx, dy, dz):
# TNT爆炸
r = 3
self.model.remove_block((dx, dy, dz))
for x in range(dx - r, dx + r + 1):
for y in range(dy - r, dy + r + 1):
for z in range(dz - r, dz + r + 1):
if (x, y, z) not in self.model.world or self.model.world[(x, y, z)] == ENDSTONE:
continue
if self.model.world[(x, y, z)] == TNT:
self.TNTboom(x, y, z)
continue
d = math.sqrt((x-dx)*(x-dx)+(y-dy)*(y-dy)+(z-dz)*(z-dz))
if d < r - 0.3:
self.model.remove_block((x, y, z))
elif d < r + 0.3 and random.randint(0, 1):
self.model.remove_block((x, y, z))
def on_mouse_press(self, x, y, button, modifiers):
if self.exclusive:
vector = self.get_sight_vector()
block, previous = self.model.hit_test(self.position, vector)
if (button == mouse.RIGHT) or \
((button == mouse.LEFT) and (modifiers & key.MOD_CTRL)):
if previous:
# 鼠标右击
x, y, z = self.position
flag = True
for i in range(0, PLAYER_HEIGHT):
if previous == normalize((x, y - i, z)):
flag = False
break
if flag:
self.model.add_block(previous, self.block)
elif button == pyglet.window.mouse.LEFT and block:
# 鼠标左击
texture = self.model.world[block]
if texture == TNT:
self.TNTboom(block[0], block[1], block[2])
elif texture != ENDSTONE:
self.model.remove_block(block)
else:
self.set_exclusive_mouse(True)
def on_mouse_motion(self, x, y, dx, dy):
if self.exclusive:
m = 0.15
x, y = self.rotation
x, y = x + dx * m, y + dy * m
y = max(-90, min(90, y))
self.rotation = (x, y)
def on_key_press(self, symbol, modifiers):
# 键盘按键
if symbol == key.W:
self.strafe[0] -= 1
self.pw = True
elif symbol == key.S:
self.strafe[0] += 1
self.ps = True
elif symbol == key.A:
self.strafe[1] -= 1
self.pa = True
elif symbol == key.D:
self.strafe[1] += 1
self.pd = True
elif symbol == key.SPACE:
self.jumping = True
elif symbol == key.R:
self.walking = not self.walking
elif symbol == key.ESCAPE:
self.set_exclusive_mouse(False)
elif symbol == key.E:
self.set_exclusive_mouse(False)
elif symbol == key.TAB:
self.flying = not self.flying
elif symbol in self.num_keys:
index = (symbol - self.num_keys[0]) % len(self.inventory)
self.block = self.inventory[index]
def on_key_release(self, symbol, modifiers):
# 键盘松键
if symbol == key.W:
if self.pw:
self.strafe[0] += 1
self.pw = False
elif symbol == key.S:
if self.ps:
self.strafe[0] -= 1
self.ps = False
elif symbol == key.A:
if self.pa:
self.strafe[1] += 1
self.pa = False
elif symbol == key.D:
if self.pd:
self.strafe[1] -= 1
self.pd = False
elif symbol == key.SPACE:
self.jumping = False
def on_resize(self, width, height):
# label
self.label.y = height - 10
# reticle
if self.reticle:
self.reticle.delete()
x, y = self.width // 2, self.height // 2
n = 10
self.reticle = pyglet.graphics.vertex_list(4,
('v2i', (x - n, y, x + n, y, x, y - n, x, y + n))
)
def set_2d(self):
# 3d模式
width, height = self.get_size()
glDisable(GL_DEPTH_TEST)
viewport = self.get_viewport_size()
glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
glOrtho(0, max(1, width), 0, max(1, height), -1, 1)
glMatrixMode(GL_MODELVIEW)
glLoadIdentity()
def set_3d(self):
# 3d模式
width, height = self.get_size()
glEnable(GL_DEPTH_TEST)
viewport = self.get_viewport_size()
glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
gluPerspective(65.0, width / float(height), 0.1, 60.0)
glMatrixMode(GL_MODELVIEW)
glLoadIdentity()
x, y = self.rotation
glRotatef(x, 0, 1, 0)
glRotatef(-y, math.cos(math.radians(x)), 0, math.sin(math.radians(x)))
x, y, z = self.position
glTranslatef(-x, -y, -z)
def on_draw(self):
# 绘制
self.clear()
self.set_3d()
glColor3d(1, 1, 1)
self.model.batch.draw(self.position[0], self.position[2])
self.draw_focused_block()
self.set_2d()
self.draw_label()
self.draw_reticle()
def draw_focused_block(self):
vector = self.get_sight_vector()
block = self.model.hit_test(self.position, vector)[0]
if block:
x, y, z = block
vertex_data = cube_vertices(x, y, z, 0.51)
glColor3d(0, 0, 0)
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)
pyglet.graphics.draw(24, GL_QUADS, ('v3f/static', vertex_data))
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)
def draw_label(self):
x, y, z = self.position
self.label.text = '%02d (%.2f, %.2f, %.2f) %d / %d' % (
pyglet.clock.get_fps(), x, y, z,
len(self.model._shown), len(self.model.world))
self.label.draw()
def draw_reticle(self):
glColor3d(0, 0, 0)
self.reticle.draw(GL_LINES)
def setup_fog():
# 初始化迷雾和光照
glEnable(GL_FOG)
glFogfv(GL_FOG_COLOR, (GLfloat * 4)(0.5 - GTIME * 0.01, 0.69 - GTIME * 0.01, 1.0 - GTIME * 0.01, 1))
glHint(GL_FOG_HINT, GL_DONT_CARE)
glFogi(GL_FOG_MODE, GL_LINEAR)
glFogf(GL_FOG_START, 30.0)
glFogf(GL_FOG_END, 60.0)
glLightfv(GL_LIGHT0, GL_POSITION, (GLfloat * 4)(0.0, 0.0, 0.0, 0.0))
setup_light()
def setup_light():
# 初始化光照
gamelight = 5.0 - GTIME / 10
glLightfv(GL_LIGHT0, GL_AMBIENT, (GLfloat * 4)(gamelight, gamelight, gamelight, 1.0))
glLightfv(GL_LIGHT0, GL_DIFFUSE, (GLfloat * 4)(gamelight, gamelight, gamelight, 1.0))
glLightfv(GL_LIGHT0, GL_SPECULAR, (GLfloat * 4)(1.0, 1.0, 1.0, 1.0))
glEnable(GL_LIGHTING)
glEnable(GL_LIGHT0)
def setup():
# 初始化
glClearColor(0.5 - GTIME * 0.01, 0.69 - GTIME * 0.01, 1.0 - GTIME * 0.01, 1)
glEnable(GL_CULL_FACE)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST)
setup_fog()
def main():
window = Window(width=800, height=600, caption='Python Minecraft', resizable=True)
window.set_exclusive_mouse(True)
setup()
pyglet.app.run()
if __name__ == '__main__':
main()
一共800多行代码,是程序的主要文件
settings.py
在这个开源的程序中,有许多设置是我们可以自己更改的,在setting.py中就提供了许多选项:
import math
TICKS_PER_SEC = 120
SECTOR_SIZE = 16
GTIME = 0 # 当前世界时间
GDAY = 0.0005
GNIGHT = 0.0015
WALKING_SPEED = 5 # 走路速度
RUNNING_SPEED = 8 # 跑步速度
FLYING_SPEED = 15 # 飞行速度
SWIMMING_SPEED = 4
GRAVITY = 25.0 # 重力
MAX_JUMP_HEIGHT = 1.5 # 最大跳跃速度
JUMP_SPEED = math.sqrt(2 * GRAVITY * MAX_JUMP_HEIGHT)
TERMINAL_VELOCITY = 35 # 终端速度
PLAYER_HEIGHT = 2 # 玩家高度
WORLDLEN = 64 # 世界长度
BASELEN = 8
TEXTURE_PATH = 'texture.png' # 纹理文件
NRC = []
DNRC = []
def getlen(x, y):
return math.sqrt(x*x+y*y)
for x in range(-4,5):
for y in range(-4,5):
if getlen(x*BASELEN, y*BASELEN) <= 32:
NRC.append((x*BASELEN, y*BASELEN))
for x in range(-1,2):
for y in range(-1,2):
DNRC.append((x*64, y*64))
texture.png
这个图片文件是一个纹理文件,包含着游戏中用到的纹理
包含了天空、西瓜、钻石、铁、树叶、雪块、南瓜、TNT、草块、沙块、冰.......
三.需要用到的包
这个程序用到了numba和pyglet两个包
pip insatll numba
#numba包:提升运行速度
pip install pyglet
#pyglet包:3D构建
四.游戏内容
1.地图种子
众所周知,MC中有地图种子这个东西,不同的种子对应不同的地图,但这个程序中都是一个种子,也就是说,无论你打开几个地图,地形都是一样的,并且遗憾的是,无法保存地图,所以只能用来娱乐一下。
2.游戏控制
W:向前
A:向左
S:向后
D:向右
space:跳跃
Tab:飞行
1-9:切换方块
左键:破坏方块
右键:放置方块
esc:暂时释放鼠标
要获取源码文件,请到链接: https://pan.baidu.com/s/1_5IyIH0qu4mq1SY_uiN6Qw 文章来源:https://www.toymoban.com/news/detail-719515.html
提取码: 1fwb 文章来源地址https://www.toymoban.com/news/detail-719515.html
到了这里,关于用python实现Minecraft的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!