基于自然语言描述的行人检索 Text-based Person Retrieval - 常用数据集 CUHK-PEDES、ICFG-PEDES、RSTPReid

这篇具有很好参考价值的文章主要介绍了基于自然语言描述的行人检索 Text-based Person Retrieval - 常用数据集 CUHK-PEDES、ICFG-PEDES、RSTPReid。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Text-based Person Retrieval 任务介绍

博主是做多模态相关的,最近刚刚接触了语言行人检索 (Text-based Person Retrieval) 这个任务,觉得挺有意思,开一个专栏来记录一下该任务的常用数据集和一些经典工作。

语言行人检索应该算是 多模态检索行人重识别 两个任务的交叉子任务,任务本身并不难理解,就是给定一段文本描述当作查询 query,然后检索到所描述的行人图片即可,如下图所示。
cuhk-pedes,细粒度跨模态检索,人工智能,计算机视觉,深度学习
同时,在待检索的图像数据库中,是存在同一人物的不同照片的,它们在数据集中标注的id是一样的,跟ReID还有点关系。

综上来看,语言行人检索和普通的跨模态图文匹配的不同点主要包括如下两个方面:

  1. 存在重识别相关的任务,即不仅要完成语言到图片的检索,模型还应该具备判断同一人物 id 的能力。
  2. 细粒度特点,语言行人检索中,不同的人彼此之间只存在细粒度的差异,而并不存在类别上的差异,属于跨模态细粒度检索,比普通的跨模态检索任务要难。

常用数据集

到目前为止,语言行人检索领域常用的数据集包括CUHK-PEDES、ICFG-PEDES、RSTPReid三个,先看一下 paper with code 上CUHK-PEDES数据集的排行情况,如下所示。
cuhk-pedes,细粒度跨模态检索,人工智能,计算机视觉,深度学习
可以看出该任务的分数已经被刷的比较高了,IRRA的Rank1分数已经能够达到73.38%,再往上刷也不是一容易的事情。接下来大致记录一下该领域常用数据集的基本情况。

CUHK-PEDES 数据集

repo地址:https://github.com/ShuangLI59/Person-Search-with-Natural-Language-Description

CUHK-PEDES是第一个专门用于语言行人检索的数据集,它包含40206张图像和80412个文本描述,共13003个id。根据官方的数据集划分,训练集由11003个身份、34054张图片和68108个文本描述组成;验证集和测试集分别包含3078张和3074张图像,6158张和6156张文本描述,两者都具有1000个身份;

ICFG-PEDES 数据集

repo地址:https://github.com/zifyloo/SSAN

ICFG-PEDES共包含4102个身份的54522张图像,每个图像只有一个对应的文本描述。该数据集分为训练集和测试集,前者包含3102个身份的34674个图文对,后者包含剩余1000个身份的19848个图文对。描述的平均长度为37.2个单词

RSTPReid 数据集

repo地址:https://github.com/NjtechCVLab/RSTPReid-Dataset

RSTPReid共包含来自4101个身份的20505张图像,每个身份都有5张不同相机拍摄的对应图像,每张图像都有2个文本描述,每个描述不少于23个单词。根据官方的数据集划分,训练集、验证集和测试集分别包含3701、200和200个身份。文章来源地址https://www.toymoban.com/news/detail-719754.html

到了这里,关于基于自然语言描述的行人检索 Text-based Person Retrieval - 常用数据集 CUHK-PEDES、ICFG-PEDES、RSTPReid的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于语音识别的自然语言生成技术

    作者:禅与计算机程序设计艺术 1.1. 背景介绍 随着人工智能技术的快速发展,自然语言处理(NLP)领域也取得了显著的进步。在语音识别技术方面,语音识别率、识别速度等指标不断提高,使得语音技术在人们的生活中扮演越来越重要的角色。为了更好地利用这些技术,将自

    2024年02月06日
    浏览(60)
  • 【自然语言处理(NLP)】基于ERNIE语言模型的文本语义匹配

    作者简介 :在校大学生一枚,华为云享专家,阿里云专家博主,腾云先锋(TDP)成员,云曦智划项目总负责人,全国高等学校计算机教学与产业实践资源建设专家委员会(TIPCC)志愿者,以及编程爱好者,期待和大家一起学习,一起进步~ . 博客主页 : ぃ灵彧が的学习日志

    2024年02月10日
    浏览(63)
  • 【自然语言处理】【多模态】ALBEF:基于动量蒸馏的视觉语言表示学习

    ALBEF:基于动量蒸馏的视觉语言表示学习 《Align before Fuse:Vision and Language Representation Learning with Momentum Distillation》 论文地址:https://arxiv.org/pdf/2107.07651.pdf 相关博客: 【自然语言处理】【多模态】多模态综述:视觉语言预训练模型 【自然语言处理】【多模态】CLIP:从自然语

    2024年02月03日
    浏览(137)
  • 【自然语言处理(NLP)】基于循环神经网络实现情感分类

    活动地址:[CSDN21天学习挑战赛](https://marketing.csdn.net/p/bdabfb52c5d56532133df2adc1a728fd) 作者简介 :在校大学生一枚,华为云享专家,阿里云星级博主,腾云先锋(TDP)成员,云曦智划项目总负责人,全国高等学校计算机教学与产业实践资源建设专家委员会(TIPCC)志愿者,以及编程

    2024年02月07日
    浏览(48)
  • 基于自然语言处理技术的智能客服与机器人

    作者:禅与计算机程序设计艺术 46.《基于自然语言处理技术的智能客服与机器人》 引言 随着互联网技术的快速发展,智能客服和机器人已经成为现代企业重要的运营手段之一。智能客服以自然语言处理技术为基础,能够实现高效、人性化的对话交互,有效提升客户满意度;

    2024年02月13日
    浏览(69)
  • 自然语言处理 Paddle NLP - 基于预训练模型完成实体关系抽取

    基础 自然语言处理(NLP) 自然语言处理PaddleNLP-词向量应用展示 自然语言处理(NLP)-前预训练时代的自监督学习 自然语言处理PaddleNLP-预训练语言模型及应用 自然语言处理PaddleNLP-文本语义相似度计算(ERNIE-Gram) 自然语言处理PaddleNLP-词法分析技术及其应用 自然语言处理Pa

    2024年02月10日
    浏览(51)
  • 基于自然语言处理的结构化数据库问答机器人系统

      完整代码下载:https://download.csdn.net/download/andrew_extra/88614388         知识库,就是人们总结出的一些历史知识的集合,存储、索引以后,可以被方便的检索出来供后人查询/学习。QnA Maker是用于建立知识库的工具,使用 QnA Maker,可以根据 FAQ(常见问题解答)文档或者 U

    2024年02月04日
    浏览(56)
  • 用好Python自然语言工具包-- 实例“基于本地知识库的自动问答”

    首先鸣谢thomas-yanxin 本问中示例来自他在GitHub上的开源项目“基于本地知识库的自动问答”,链接如下: thomas-yanxin/LangChain-ChatGLM-Webui: 基于LangChain和ChatGLM-6B的针对本地知识库的自动问答 (github.com) 目录 1. 基础知识: 2. NLTK库的使用 3. 实例代码分析 设备的定义 函数定义:从网

    2024年02月05日
    浏览(72)
  • 构建基于AWSLambda的人工智能应用:语音识别、图像识别和自然语言处理

    作者:禅与计算机程序设计艺术 在人工智能领域,用大数据、机器学习等方法来解决复杂的问题,已经成为越来越多企业和开发者关注的问题。但是,如何把这些方法落地到生产环境中,仍然是一个难题。 随着云计算平台的广泛普及,AWS Lambda作为一项服务正在成为各个公司

    2024年02月09日
    浏览(78)
  • 基于GPT-3、ChatGPT、GPT-4等Transformer架构的自然语言处理

    Transformer正在颠覆AI领域。市面上有这么平台和Transformer模型。本书将引导你使用Hugging Face从头开始预训练一个RoBERTa模型,包括构建数据集、定义数据整理器以及训练模型等。将引领你进入Transformer的世界,将讲述不同模型和平台的优势,指出如何消除模型的缺点和问题。 《基

    2024年02月03日
    浏览(67)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包