【电路设计】缓启动电路的工作原理

这篇具有很好参考价值的文章主要介绍了【电路设计】缓启动电路的工作原理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【摘要】

通信产品一般采用分散供电方式,各单板上采用DC/DC模块将-48V电源转换为其所需的5V、3.3V、2.5V等子电源。由于输入电压高,电源电路中又存在用于滤波和防止DIP的大电容,在单板插入上电时,会对-48V电源造成冲击,瞬时大电流将造成-48V电源电压出现跌落,可能影响到其它单板的正常工作;同时,由于瞬时大电流的原因,单板插入时在接插件上会产生明显的打火现象,这会引起电磁干扰,并对接插件造成腐蚀。为了避免上述现象,-48V电源供电单板需要“缓慢”上电。

一、缓启动电路的作用

通信设备产品单板上几乎都在电源模块的输入端设计有缓启动电路,缓启动电路的功能主要有两个: 1、延迟单板电源的上电时间:我们的单板一般都要求支持热拔插,当单板插入子架时,单板插头和母板插针的接触是不稳定的,为了避免这种抖动的影响,可以在电源模块和母板电源之间加一个电路,使母板的电源延迟一段时间以后再加到电源模块。 2、减小上电的冲击电流:由于单板电源都接有滤波电容,电源上电瞬间跳变时由于电容的充电,会产生较大的冲击电流,造成母板电源电压抖动,跌落,以及强烈的电磁辐射,很容易对其他工作中的单板造成不良影响,如果能把电源的上电速度变缓一些,就能有效的减小这种影响。

二、缓启动电路的工作原理

电路的原理图:

【电路设计】缓启动电路的工作原理,硬件电子工程师,硬件工程,嵌入式硬件

缓启动电路由R39,R49,C7和Q31组成,Q31是绝缘栅型场效应管,也是缓启动电路最关键的器件。为了理解缓启动的原理,首先我们来回顾一下MOS管的一点基础知识。下图大致描述了典型的MOS管的转移特性:

【电路设计】缓启动电路的工作原理,硬件电子工程师,硬件工程,嵌入式硬件

MOS管的特性表明,当Vgs小于一定电压(Vth)时,DS极之间的电阻Rds是很大的,可以认为开路,电流不能通过;当Vgs达到Vth时,MOS管开始导通,Rds随Vgs的增加迅速减小。当Vgs达到一定的程度,Rds很小,可以认为DS之间是近似短路的。Vth可以称之为开启电压(Voltage-Gate threshold),一般为2-4V。 在的缓启动电路中,电阻R39,R49和C7构成了分压式RC时间常数电路,C7并联在Q31的GS极之间,也就是Vc7=Vgs。当48V电源刚加到单板时,C7未充电,Vgs=0,MOS不导通,电源模块不供电。随后,48V通过R39,R49向C7充电,当C7的电压达到Vth时,MOS开始导通,这一阶段,完成的是延时上电的作用,延迟时间可由下式估算:

Uin(R39/(R39+R49))(1-e-T/ )=Vth其中,T为延迟时间, Uin=48V,为RC电路的时间常数,=C7(R39//R49),Vth一般取4V。将原理图中数值代入计算可知,延迟时间T约等于15.3ms。 MOS管开始导通后,Vgs继续增加(直到12V左右),Rds迅速减小,缓启动的输出电压逐渐升高直到到与输入电压基本一致。电源模块开始工作,单板正式上电。在这一过程中,输出电压并不是瞬间跳变到最高的,因此,大大减轻了冲击电流的干扰。这一过程的时间与C7的充电速度,MOS的特性,负载特性都有关系,难以具体计算,具体还需实测调整。

三、实测波形分析

下图是缓启动的输入电压上电波形

【电路设计】缓启动电路的工作原理,硬件电子工程师,硬件工程,嵌入式硬件

这是缓启动输入端在电源开关闭合瞬间的波形,可以看到画圆圈处的抖动,持续时间约1ms,如果是热拔插,这个抖动的幅度和持续时间都将可能更大。 下图是缓启动的C7电压上升波形

【电路设计】缓启动电路的工作原理,硬件电子工程师,硬件工程,嵌入式硬件

可以看到,上电15ms后,C7电源上升到约4V,与理论计算值基本一致。 下图是缓启动MOS管的D,S间电压波形。

【电路设计】缓启动电路的工作原理,硬件电子工程师,硬件工程,嵌入式硬件

可以看到,在开关闭合后的14ms以内,输入电压完全加在MOS的DS两端,这与理论计算值基本一致(由于MOS管的Vth并不一定是4V,有些误差是很正常的),从14ms开始,Vds以指数方式下降,过程时间约4ms。 下图是缓启动输出的电压波形。

【电路设计】缓启动电路的工作原理,硬件电子工程师,硬件工程,嵌入式硬件

可以看到,对比缓启动的输入电压上电波形,缓启动的输出电压不再有开关闭合时的抖动,而且上电边沿也非常明显,过程约4ms,实现了减小上电冲击的目的。 让我们再把所有的波形放在同一时间轴上来比较一下,如下:

【电路设计】缓启动电路的工作原理,硬件电子工程师,硬件工程,嵌入式硬件

可以看到,经过缓启动电路之后,单板实际供电电压Uout比输入电压Uin总共延时了将近20ms,不但消除了上电抖动,而且有效减小了冲击。

四、总结

1、缓启动的时间常数电路必须确保电容充电完成后其电压不能大于15V,因为一般大功率MOS管的G,S间击穿电压在20V左右,电压过高,会损坏MOS管(现在很多单板上在电容两端并联了一个稳压管就是起这个作用的),但是也不应该低于10V,因为一般大功率MOS管的D,S间电阻Rds都需要Vgs达到10V后才达到最小值(一般在0.1ohm量级)。

2、缓启动的延迟时间不能太长,原因有二。其一,延迟太长,热拔插时,单板接口信号线已连接,而电源仍未上电,会造成接口器件闩锁损坏;其二,缓启动关键器件MOS管在从截止到导通转换的过程中瞬间功耗是非常大的,如果电容充电过于缓慢,造成边沿时间太长,MOS管将因为功耗过大而损坏。延时一般取几十毫秒。文章来源地址https://www.toymoban.com/news/detail-720019.html

到了这里,关于【电路设计】缓启动电路的工作原理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数字电路硬件设计系列(十二)之USB电路设计

    USB电路,在我们的平时的应用十分的广泛,常见的鼠标,键盘、显示屏的触摸功能等,对外的接口均使用的是USB接口。USB接口主要可以划分为两种: USB 2.0 、 USB 3.0 。从连接器上区分的依据是,内部颜色 白色 的为USB 2.0接口,内部颜色为 蓝色 的为USB 3.0接口(当然也不是绝对

    2024年02月14日
    浏览(77)
  • 数字电路硬件设计系列(十一)之CAN电路设计

    CAN通信时一种工业控制通信系统,最早时应用于汽车电子产品。CAN总线主要的特点: 传输距离远,最远可达10km。 CAN总线抗干扰能力强,有有效保证整个系统的稳定性。 CAM总线传输的速度快,理论上峰值可以达到1Mbps,能有效保证数据通信的即时性。 单条总线上,支持128个节

    2024年02月10日
    浏览(46)
  • 数字电路硬件设计系列(三)之缓启电路设计

            在一些大电压、大电流的产品中,上电的瞬间通常会有较大的电流冲击,下图是一款产品上电过程中波形。最大的电流达到14.2A,这种过流有可能损坏电子元器件。 电流过充波形 解决上述问题,通常采取的策略是在电源的入口增加 缓启动电路 ,也成为 软起动 。

    2024年02月06日
    浏览(60)
  • 数字电路硬件设计系列(十)之RS485电路设计

    RS485通信属于串口通信中的半双工通信,RS485具有支持多节点(32个节点)、传输距离远(最大1219m)、接收灵敏度高(200mV电压)、连接简单(在构成通信网络时,仅需要一对双绞线作传输线)、能抑制共模干扰(差分传输)、成本低廉等特点,最高的传输速率可达10Mbps。在多

    2024年02月06日
    浏览(85)
  • 硬件电路设计----DC-DC电路

    文章目录 一、 概念及特点 二、分类 三、设计技巧及主要技术参数选用要求 四、器件选型一般原则 五、 外围器件选择的要求 六 、PCB设计要求 大家好,我是致力于在硬件设计创出一片天地的新手小白:陌白 电子产品中,总是可见DC-DC的身影,今天分享DC-DC的相关知识点。

    2024年02月09日
    浏览(46)
  • 增益可控放大电路-电路与电子技术课程设计

    1.设计一款放大电路,其增益包括0.01、0.1、1、10、100、1000倍可选。 2.设计一个增益选择电路,可利用若干按钮(非开关)进行选择。 3.设计一个数字显示电路,显示当前增益大小(分贝显示)。 通过本项目实验,使学生熟悉掌握电路原理和设计方法,尤其在电路出现异常现

    2024年02月16日
    浏览(46)
  • 27-硬件设计-TYPE-C电路设计

    由于USB2.0的数据率最高只有480Mbps, 可以不考虑信号走线的阻抗连续性,USB2.0的D+/-信号可以不被MUX控制而直接从主控芯片走线,然后一分二连接至USB Type-C插座的两组D+/-管脚上。 但USB3.0或者USB3.1的数据率高达5Gbps或者10Gbps,如果信号线还是被简单地一分二的话,不连续的信号线

    2024年01月19日
    浏览(56)
  • 硬件设计--stm32自动下载电路设计

    1、Stm32 一键下载电路详解 2、启动模式,BOOT0和BOOT1详解 3、STM32自动ISP电路设计 4、STM32 USB接口 一键下载电路详解与过程分析 参考博客:FlyMcu - 用于STM32芯片ISP串口程序一键下载的免费软件 下面是stm32自动下载电路原理图。 正常使用下BOOT1引脚需要接地(不需要debug调试),也就

    2024年02月16日
    浏览(51)
  • 数字电路硬件设计系列(十七)之上电时序控制电路

    上电时序,也叫做Power-up Sequence,是指电源时序关系。 下面 就是一系列电源的上电的先后关系: 采用不同的电容来控制上电延时时间的长短,具体的电路见下图: 这种上电时序控制的方式, 电路结构简单 ,但是 延时时间难以精确的控制 。 在FPGA的电源时序控制中,应用十

    2024年02月12日
    浏览(48)
  • 数字电路硬件设计系列(七)之泄放电路设计

    泄放电路就是将一部分能量转换成热或者其它形式能量的电路。 单板断电后,LED灯长时间没有熄灭,就是对储能器件的能量没有合理的泄放掉。 余电快速泄放电路 ,即 放电电路 ,用在需要快速反复开关电源,且负载电路上有大容量电容的场景。断开电源开关后,如果负载

    2024年02月09日
    浏览(174)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包