目录
1.在HBase中创建表
2.写入API
2.1普通模式写入hbase(逐条写入)
2.2普通模式写入hbase(buffer写入)
2.3设计模式写入hbase(buffer写入)
3.HBase表映射至Hive中
1.在HBase中创建表
hbase(main):003:0> create_namespace 'events_db'
hbase(main):004:0> create 'events_db:users','profile','region','registration'
hbase(main):005:0> create 'events_db:user_friend','uf'
hbase(main):006:0> create 'events_db:events','schedule','location','creator','remark'
hbase(main):007:0> create 'events_db:event_attendee','euat'
hbase(main):008:0> create 'events_db:train','eu'
hbase(main):011:0> list_namespace_tables 'events_db'
TABLE
event_attendee
events
train
user_friend
users
5 row(s)
2.写入API
2.1普通模式写入hbase(逐条写入)
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HConstants;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Table;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;
import java.io.IOException;
import java.time.Duration;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Properties;
/**
* 将Kafka中的topic为userfriends中的数据消费到hbase中
* hbase中的表为events_db:user_friend
*/
public class UserFriendToHB {
static int num = 0; //计数器
public static void main(String[] args) {
Properties properties = new Properties();
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "kb129:9092");
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class);
properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"earliest");
properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,"false");
properties.put(ConsumerConfig.GROUP_ID_CONFIG, "user_friend_group1");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);
consumer.subscribe(Collections.singleton("userfriends"));
//配置hbase信息,连接hbase数据库
Configuration conf = HBaseConfiguration.create();
conf.set(HConstants.HBASE_DIR, "hdfs://kb129:9000/hbase");
conf.set(HConstants.ZOOKEEPER_QUORUM, "kb129");
conf.set(HConstants.CLIENT_PORT_STR, "2181");
Connection connection = null;
try {
connection = ConnectionFactory.createConnection(conf);
Table ufTable = connection.getTable(TableName.valueOf("events_db:user_friend"));
ArrayList<Put> datas = new ArrayList<>();
while (true){
ConsumerRecords<String, String> poll = consumer.poll(Duration.ofMillis(100));
//每次for循环前清空datas
datas.clear();
for (ConsumerRecord<String, String> record : poll) {
//System.out.println(record.value());
String[] split = record.value().split(",");
int i = (split[0] + split[1]).hashCode();
Put put = new Put(Bytes.toBytes(i));
put.addColumn(Bytes.toBytes("uf"), Bytes.toBytes("userid"), split[0].getBytes());
put.addColumn("uf".getBytes(), "friend".getBytes(),split[1].getBytes());
datas.add(put);
}
num = num + datas.size();
System.out.println("---------num:" + num);
if (datas.size() > 0){
ufTable.put(datas);
}
try {
Thread.sleep(10);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
2.2普通模式写入hbase(buffer写入)
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HConstants;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;
import java.io.IOException;
import java.time.Duration;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Properties;
/**
* 将Kafka中的topic为userfriends中的数据消费到hbase中
* hbase中的表为events_db:user_friend
*/
public class UserFriendToHB2 {
static int num = 0; //计数器
public static void main(String[] args) {
Properties properties = new Properties();
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "kb129:9092");
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class);
properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"earliest");
properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,"false");
properties.put(ConsumerConfig.GROUP_ID_CONFIG, "user_friend_group1");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);
consumer.subscribe(Collections.singleton("userfriends"));
//配置hbase信息,连接hbase数据库
Configuration conf = HBaseConfiguration.create();
conf.set(HConstants.HBASE_DIR, "hdfs://kb129:9000/hbase");
conf.set(HConstants.ZOOKEEPER_QUORUM, "kb129");
conf.set(HConstants.CLIENT_PORT_STR, "2181");
Connection connection = null;
try {
connection = ConnectionFactory.createConnection(conf);
BufferedMutatorParams bufferedMutatorParams = new BufferedMutatorParams(TableName.valueOf("events_db:user_friend"));
bufferedMutatorParams.setWriteBufferPeriodicFlushTimeoutMs(10000);//设置超时flush时间最大值
bufferedMutatorParams.writeBufferSize(10*1024*1024);//设置缓存大小flush
BufferedMutator bufferedMutator = connection.getBufferedMutator(bufferedMutatorParams) ;
ArrayList<Put> datas = new ArrayList<>();
while (true){
ConsumerRecords<String, String> poll = consumer.poll(Duration.ofMillis(100));
datas.clear(); //每次for循环前清空datas
for (ConsumerRecord<String, String> record : poll) {
//System.out.println(record.value());
String[] split = record.value().split(",");
int i = (split[0] + split[1]).hashCode();
Put put = new Put(Bytes.toBytes(i));
put.addColumn(Bytes.toBytes("uf"), Bytes.toBytes("userid"), split[0].getBytes());
put.addColumn("uf".getBytes(), "friend".getBytes(),split[1].getBytes());
datas.add(put);
}
num = num + datas.size();
System.out.println("---------num:" + num);
if (datas.size() > 0){
bufferedMutator.mutate(datas);
}
}
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
2.3设计模式写入hbase(buffer写入)
(1)Iworker接口
public interface IWorker {
void fillData(String targetName);
}
(2)worker实现类
import nj.zb.kb23.kafkatohbase.oop.writer.IWriter;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;
import java.time.Duration;
import java.util.Collections;
import java.util.Properties;
public class Worker implements IWorker {
private KafkaConsumer<String, String> consumer = null;
private IWriter writer = null;
public Worker(String topicName, String consumerGroupId, IWriter writer) {
this.writer = writer;
Properties properties = new Properties();
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "kb129:9092");
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
properties.put(ConsumerConfig.GROUP_ID_CONFIG, consumerGroupId);
consumer = new KafkaConsumer<>(properties);
consumer.subscribe(Collections.singleton(topicName));
}
@Override
public void fillData(String targetName) {
int num = 0;
while (true) {
ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
int returnNum = writer.write(targetName, records);
num += returnNum;
System.out.println("---------num:" + num);
}
}
}
(3)IWriter接口
import org.apache.kafka.clients.consumer.ConsumerRecords;
/**
* 完成kafka消费出的数据 ConsumerRecords 的组装和写入到指定类型的数据库 指定table 的工作
*/
public interface IWriter {
int write(String targetTableName, ConsumerRecords<String, String> records);
}
(4)writer实现类
import nj.zb.kb23.kafkatohbase.oop.handler.IParseRecord;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HConstants;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import java.io.IOException;
import java.util.List;
public class HBaseWriter implements IWriter{
private Connection connection = null;
private BufferedMutator bufferedMutator = null;
private IParseRecord handler = null;
/**
* 初始化HBaseWriter对象
*/
public HBaseWriter(IParseRecord handler) {
this.handler = handler;
Configuration conf = HBaseConfiguration.create();
conf.set(HConstants.HBASE_DIR, "hdfs://kb129:9000/hbase");
conf.set(HConstants.ZOOKEEPER_QUORUM, "kb129");
conf.set(HConstants.CLIENT_PORT_STR, "2181");
try {
connection = ConnectionFactory.createConnection(conf);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
private void getBufferedMutator(String targetTableName){
BufferedMutatorParams bufferedMutatorParams = new BufferedMutatorParams(TableName.valueOf(targetTableName));
bufferedMutatorParams.setWriteBufferPeriodicFlushTimeoutMs(10000);//设置超时flush时间最大值
bufferedMutatorParams.writeBufferSize(10*1024*1024);//设置缓存大小flush
if (bufferedMutator == null){
try {
bufferedMutator = connection.getBufferedMutator(bufferedMutatorParams);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
@Override
public int write(String targetTableName, ConsumerRecords<String, String> records) {
if (records.count() > 0) {
this.getBufferedMutator(targetTableName);
List<Put> datas = handler.parse(records);
try {
bufferedMutator.mutate(datas);
} catch (IOException e) {
throw new RuntimeException(e);
}
return datas.size();
}else {
return 0;
}
}
}
(5)IParseRecord接口
import org.apache.hadoop.hbase.client.Put;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import java.util.List;
/**
* 将record 装配成 put
*/
public interface IParseRecord {
List<Put> parse(ConsumerRecords<String, String> records);
}
(6)具体表对应的handler类(包装Put)
UsersHandler
import org.apache.hadoop.hbase.client.Put;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import java.util.ArrayList;
import java.util.List;
public class UsersHandler implements IParseRecord{
List<Put> datas = new ArrayList<>();
@Override
public List<Put> parse(ConsumerRecords<String, String> records) {
datas.clear();
for (ConsumerRecord<String, String> record : records) {
String[] users = record.value().split(",");
Put put = new Put(users[0].getBytes());
put.addColumn("profile".getBytes(), "birthyear".getBytes(), users[2].getBytes());
put.addColumn("profile".getBytes(), "gender".getBytes(), users[3].getBytes());
put.addColumn("region".getBytes(), "locale".getBytes(), users[1].getBytes());
if (users.length > 4){
put.addColumn("registration".getBytes(), "joinedAt".getBytes(), users[4].getBytes());
}
if (users.length > 5){
put.addColumn("region".getBytes(), "location".getBytes(), users[5].getBytes());
}
if (users.length > 6){
put.addColumn("region".getBytes(), "timezone".getBytes(), users[6].getBytes());
}
datas.add(put);
}
return datas;
}
}
TrainHandler
import org.apache.hadoop.hbase.client.Put;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import java.util.ArrayList;
import java.util.List;
public class TrainHandler implements IParseRecord{
List<Put> datas = new ArrayList<>();
@Override
public List<Put> parse(ConsumerRecords<String, String> records) {
datas.clear();
for (ConsumerRecord<String, String> record : records) {
String[] trains = record.value().split(",");
double random = Math.random();
Put put = new Put((trains[0]+trains[1]+random).getBytes());
put.addColumn("eu".getBytes(), "user".getBytes(), trains[0].getBytes());
put.addColumn("eu".getBytes(), "event".getBytes(), trains[1].getBytes());
put.addColumn("eu".getBytes(), "invited".getBytes(), trains[2].getBytes());
put.addColumn("eu".getBytes(), "timestamp".getBytes(), trains[3].getBytes());
put.addColumn("eu".getBytes(), "interested".getBytes(), trains[4].getBytes());
put.addColumn("eu".getBytes(), "not_interested".getBytes(), trains[5].getBytes());
datas.add(put);
}
return datas;
}
}
EventsHandler
import org.apache.hadoop.hbase.client.Put;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import java.util.ArrayList;
import java.util.List;
public class EventsHandler implements IParseRecord {
List<Put> datas = new ArrayList<>();
@Override
public List<Put> parse(ConsumerRecords<String, String> records) {
datas.clear();
for (ConsumerRecord<String, String> record : records) {
String[] events = record.value().split(",");
Put put = new Put(events[0].getBytes());
put.addColumn("creator".getBytes(), "user_id".getBytes(),events[1].getBytes());
put.addColumn("schedule".getBytes(), "start_time".getBytes(),events[2].getBytes());
put.addColumn("location".getBytes(), "city".getBytes(),events[3].getBytes());
put.addColumn("location".getBytes(), "state".getBytes(),events[4].getBytes());
put.addColumn("location".getBytes(), "zip".getBytes(),events[5].getBytes());
put.addColumn("location".getBytes(), "country".getBytes(),events[6].getBytes());
put.addColumn("location".getBytes(), "lat".getBytes(),events[7].getBytes());
put.addColumn("location".getBytes(), "lng".getBytes(),events[8].getBytes());
put.addColumn("remark".getBytes(), "common_words".getBytes(),events[9].getBytes());
datas.add(put);
}
return datas;
}
}
EventAttendHandler文章来源:https://www.toymoban.com/news/detail-720327.html
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import java.util.ArrayList;
import java.util.List;
public class EventAttendHandler implements IParseRecord{
@Override
public List<Put> parse(ConsumerRecords<String, String> records) {
List<Put> datas = new ArrayList<>();
for (ConsumerRecord<String, String> record : records) {
String[] splits = record.value().split(",");
Put put = new Put((splits[0] + splits[1] + splits[2]).getBytes());
put.addColumn(Bytes.toBytes("euat"), Bytes.toBytes("eventid"), splits[0].getBytes());
put.addColumn("euat".getBytes(), "friendid".getBytes(),splits[1].getBytes());
put.addColumn("euat".getBytes(), "state".getBytes(),splits[2].getBytes());
datas.add(put);
}
return datas;
}
}
(7)主程序文章来源地址https://www.toymoban.com/news/detail-720327.html
import nj.zb.kb23.kafkatohbase.oop.handler.*;
import nj.zb.kb23.kafkatohbase.oop.worker.Worker;
import nj.zb.kb23.kafkatohbase.oop.writer.HBaseWriter;
import nj.zb.kb23.kafkatohbase.oop.writer.IWriter;
/**
* 将Kafka中的topic为...中的数据消费到hbase中
* hbase中的表为events_db:...
*/
public class KfkToHbTest {
static int num = 0; //计数器
public static void main(String[] args) {
//IParseRecord handler = new EventAttendHandler();
//IWriter writer = new HBaseWriter(handler);
//String topic = "eventattendees";
//String consumerGroupId = "eventattendees_group1";
//String targetName = "events_db:event_attendee";
//Worker worker = new Worker(topic, consumerGroupId, writer);
//worker.fillData(targetName);
/*EventsHandler eventsHandler = new EventsHandler();
IWriter writer = new HBaseWriter(eventsHandler);
Worker worker = new Worker("events", "events_group1", writer);
worker.fillData("events_db:eventsb");*/
/*UsersHandler usersHandler = new UsersHandler();
IWriter writer = new HBaseWriter(usersHandler);
Worker worker = new Worker("users_raw", "users_group1", writer);
worker.fillData("events_db:users");*/
TrainHandler trainHandler = new TrainHandler();
IWriter writer = new HBaseWriter(trainHandler);
Worker worker = new Worker("train", "train_group1", writer);
worker.fillData("events_db:train2");
}
}
3.HBase表映射至Hive中
create database if not exists events;
use events;
create external table hb_users(
userId string,
birthyear int,
gender string,
locale string,
location string,
timezone string,
joinedAt string
)stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
with SERDEPROPERTIES (
'hbase.columns.mapping'=':key,profile:birthyear,profile:gender,region:locale,region:location,region:timezone,registration:joinedAt'
)
tblproperties ('hbase.table.name'='events_db:users');
select * from hb_users limit 3;
select count(1) from hb_users;
--orc格式创建内部表存储映射外部表,安全保存数据,创建好可以直接删除hbase中的表
create table users stored as orc as select * from hb_users;
select * from users limit 3;
select count(1) from users;
drop table hb_users;
--38209 1494
select count(*) from users where birthyear is null;
select round(avg(birthyear), 0) from users;
select `floor`(avg(birthyear)) from users;
-- 处理空字段,覆盖写入
with
tb as ( select `floor`(avg(birthyear)) avgAge from users ),
tb2 as ( select userId, nvl(birthyear, tb.avgAge),gender,locale,location,timezone,joinedAt from users,tb)
insert overwrite table users
select * from tb2;
-- 查询到性别中空字符串109个
select count(gender) count from users where gender is null or gender = "";
--------------------------------------------------------
create external table hb_events(
event_id string,
user_id string,
start_time string,
city string,
state string,
zip string,
country string,
lat float,
lng float,
common_words string
)stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
with SERDEPROPERTIES (
'hbase.columns.mapping'=':key,creator:user_id,schedule:start_time,location:city,location:state,location:zip,location:country,location:lat,location:lng,remark:common_words'
)
tblproperties ('hbase.table.name'='events_db:events');
select * from hb_events limit 10;
create table events stored as orc as select * from hb_events;
select count(*) from hb_events;
select count(*) from events;
drop table hb_events;
select event_id from events group by event_id having count(event_id) >1;
with
tb as (select event_id, row_number() over (partition by event_id) rn from events)
select event_id from tb where rn > 1;
select user_id, count(event_id) num from events group by user_id order by num desc;
-----------------------------------------------------
create external table if not exists hb_user_friend(
row_key string,
userid string,
friendid string
)stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
with SERDEPROPERTIES ('hbase.columns.mapping'=':key,uf:userid,uf:friend')
tblproperties ('hbase.table.name'='events_db:user_friend');
select * from hb_user_friend limit 3;
create table user_friend stored as orc as select * from hb_user_friend;
select count(*) from hb_user_friend;
select count(*) from user_friend;
drop table hb_user_friend;
-----------------------------------------------------------
create external table if not exists hb_event_attendee(
row_key string,
eventid string,
friendid string,
attendtype string
)stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
with SERDEPROPERTIES ('hbase.columns.mapping'=':key,euat:eventid,euat:friendid,euat:state')
tblproperties ('hbase.table.name'='events_db:event_attendee');
select * from hb_event_attendee limit 3;
select count(*) from hb_event_attendee;
create table event_attendee stored as orc as select * from hb_event_attendee;
select * from event_attendee limit 3;
select count(*) from event_attendee;
drop table hb_event_attendee;
--------------------------------------------------------------
create external table if not exists hb_train(
row_key string,
userid string,
eventid string,
invited string,
`timestamp` string,
interested string
)stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
with SERDEPROPERTIES ('hbase.columns.mapping'=':key,eu:user,eu:event,eu:invited,eu:timestamp,eu:interested')
tblproperties ('hbase.table.name'='events_db:train');
select * from hb_train limit 3;
select count(*) from hb_train;
create table train stored as orc as select * from hb_train;
select * from train limit 3;
select count(*) from train;
drop table hb_train;
-----------------------------------------------
create external table locale(
locale_id int,
locale string
)
row format delimited fields terminated by '\t'
location '/events/data/locale';
select * from locale;
create external table time_zone(
time_zone_id int,
time_zone string
)
row format delimited fields terminated by ','
location '/events/data/timezone';
select * from time_zone;
到了这里,关于Kafka To HBase To Hive的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!