python 2组list绘制拟合曲线、计算拟合方程 R^2

这篇具有很好参考价值的文章主要介绍了python 2组list绘制拟合曲线、计算拟合方程 R^2。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

import matplotlib.pyplot as plt
import numpy as np
# plt.rcParams['font.family'] = 'SimHei' # 指定使用中文字体,例如宋体(SimHei)

def Curve_Fitting(x, y, deg):
    parameter = np.polyfit(x, y, deg)    #拟合deg次多项式
    p = np.poly1d(parameter)             #拟合deg次多项式
    aa=''                               #方程拼接  ——————————————————
    for i in range(deg+1): 
        bb=round(parameter[i], 2)
        if bb>0:
            if i==0:
                bb=str(bb)
            else:
                bb='+'+str(bb)
        else:
            bb=str(bb)
        if deg==i:
            aa=aa+bb
        else:
            aa=aa+bb+'x^'+str(deg-i)    #方程拼接  ——————————————————
    # 利用相关系数矩阵计算R方
    r2 = round(np.corrcoef(y, p(x))[0,1]**2,2)
    plt.scatter(x, y, label="Comparison", color='b', marker='o')     #原始数据散点图
    plt.plot(x, p(x), color='r')  # 画拟合曲线
   # plt.text(-1,0,aa,fontdict={'size':'10','color':'b'})
    plt.legend([f"R^2: {r2}", f"Fitting Equation: {aa}"])   #拼接好的方程和R方放到图例
    # 添加标签和标题
    plt.xlabel("Old Normalized_TMB Values")
    plt.ylabel("New Normalized_TMB Values")
    plt.title("Comparison of Normalized_TMB")
    plt.savefig('./tmp.jpg')
    plt.show()
    print('曲线方程为:',aa)
    
    print('     r^2为:', r2)


def plot_scatter(old_list, new_list):
    # 示例数据:相同样本的两次运行结果
    # sample_names = ["Sample 1", "Sample 2", "Sample 3", "Sample 4"]
    run1_values = old_list  # 第一次运行的数据
    run2_values = new_list  # 第二次运行的数据
    # 创建散点图
    plt.scatter(run1_values, run2_values, label="Comparison", color='b', marker='o')
    # 添加标签和标题
    plt.xlabel("Old Normalized_TMB Values")
    plt.ylabel("New Normalized_TMB Values")
    plt.title("Comparison of Normalized_TMB")
    # 添加数据点的标签
    # for i, sample_name in enumerate(sample_names):
    #     plt.annotate(sample_name, (run1_values[i], run2_values[i]))
    # 添加一条线表示一对一的关系
    plt.plot([min(run1_values), max(run1_values)], [min(run1_values), max(run1_values)], linestyle='--', color='r', label="1:1 Line")
    # 显示图例
    plt.legend()
    plt.savefig('./tmp.jpg')
    # 显示散点图
    plt.show()





normalzed_tmb_compare_file = 'normalzed_tmb.txt'
old_FFPE_list, new_FFPE_list = [], []
old_CF_list, new_CF_list = [], []
with open(normalzed_tmb_compare_file) as f:
    next(f)
    for line in f:
        line_list = line.strip('\n').split('\t')
        # if float(line_list[0]) > 20:
        #     continue
        old, type_, new = line_list
        if type_ == 'FFPE':
            old_FFPE_list.append(float(line_list[0]))
            new_FFPE_list.append(float(line_list[-1]))
        if type_ == 'CF':
            old_CF_list.append(float(line_list[0]))
            new_CF_list.append(float(line_list[-1])) 
    # Curve_Fitting(old_FFPE_list, new_FFPE_list, 1)
    # Curve_Fitting(old_CF_list, new_CF_list, 1)
    Curve_Fitting(old_CF_list+old_FFPE_list, new_CF_list+new_FFPE_list, 1)
    # plot_scatter(old_list, new_list)

文章来源地址https://www.toymoban.com/news/detail-720763.html

到了这里,关于python 2组list绘制拟合曲线、计算拟合方程 R^2的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python做曲线拟合(一元多项式拟合及任意函数拟合)

    目录 1. 一元多项式拟合 使用方法 np.polyfit(x, y, deg) 2. 任意函数拟合 使用 curve_fit() 方法 实例: (1)初始化 x 和 y 数据集 (2)建立自定义函数 (3)使用自定义的函数生成拟合函数绘图  polyfig 使用的是最小二乘法,用于拟合一元多项式函数。 参数说明: x 就是x坐标,

    2024年02月02日
    浏览(48)
  • 自留-Python:线性拟合(直线+曲线)

    使用最小二乘法的线性拟合,自留代码 读取数据  

    2024年02月12日
    浏览(41)
  • 【python】——超市管理系统和用turtle动态画图(爱心和魔幻曲线)

    🎃 本期内容概括: 这期博客主要分为三个程序,下面是对三个程序的简介。 💎 程序一: 这是一个超市管理系统,其中包括5种操作,分别是:1.查询商品 2.新增商品 3.卖出商品 4.汇总 5.退出系统等功能。 💎 程序二: 相信很多友友都想用程序给自己爱的人画一个爱心,包括

    2024年02月05日
    浏览(47)
  • 计算机图形学中的曲线问题——拉格朗日插值曲线绘制实践

    限于篇幅,我们将在这篇文章中介绍拉格朗日插值曲线绘制实践,主文章链接: GGN_2015 计算机图形学中的曲线问题 在主文章中我们已经介绍了拉格朗日插值函数的绘制方法。给定一个函数必须通过的点的集合,保证任意两点 x x x 指不同,我们就能构造出一条拉格朗日插值函

    2024年02月14日
    浏览(43)
  • 【计算机图形学】【实验报告】太阳系绘制、B样条曲线绘制(附代码)

    实 验 报 告 一、实验目的 掌握三维图形的显示原理和方法,掌握三维观察的原理和方法; 掌握OpenGL中矩阵堆栈函数的使用,会使用堆栈函数进行复杂场景的组装。 掌握OpenGL中三维观察变换常用的函数的使用方法,了解三维模型的贴图方法; 掌握自由曲线的生成方法,熟练

    2024年02月10日
    浏览(40)
  • 计算机图形学:三次Bezier曲线的绘制(算法原理及代码实现)

    一、实现方案        贝塞尔曲线原理:贝塞尔曲线是计算机图形图像造型的基本工具,是图形造型运用得最多的基本线条之一。它通过控制曲线上的四个点(起始点、终止点以及两个相互分离的中间点)来创造、编辑图形。其中起重要作用的是位于曲线中央的控制线。这条

    2024年02月11日
    浏览(50)
  • Python绘制多分类ROC曲线

    目录 1 数据集介绍 1.1 数据集简介 1.2 数据预处理  2随机森林分类 2.1 数据加载 2.2 参数寻优 2.3 模型训练与评估 3 绘制十分类ROC曲线 第一步,计算每个分类的预测结果概率 第二步,画图数据准备 第三步,绘制十分类ROC曲线 分类数据集为某公司手机上网满意度数据集,数据如

    2024年02月04日
    浏览(49)
  • 如何根据自有数据拟合绘制3D曲面图-Python matplotlib

    目录 问题提出 绘制简单曲面图 使用自有数据拟合绘制 在网上找了很久怎么用自己有的dataframe数据,拟合出3d的曲面图,大部分人都是根据已知函数去绘制,有几篇进行拟合绘制,但是还是根据特定函数生成的数据,没有一篇直接用dataframe数据画3d曲面图的。讲的比较好的几

    2024年02月09日
    浏览(45)
  • mmdetection 中 Mask Rcnn检测结果可视化(DICE计算、PR曲线绘制等)

    mmdetection中的Mask Rcnn是一个很不错的检测网络,既可以实现目标检测,也可以实现语义分割。官方也有很详细的doc指导,但是对新手来说并不友好,刚好之前笔者写的mmlab系列里面关于可视化都还没有一个详细的文档,也在此一并介绍。 具体怎么制作自己的数据集和训练自己

    2024年02月12日
    浏览(46)
  • 【python】plt.plot() 函数绘制loss曲线

    目录 一.  数据形式 (输入数据) 二.  绘图(完整代码) 三.  plt.plot() 函数 (调整图形) 1. plt.plot(x, y)  2. plt.plot(x, y, \\\"格式控制字符串\\\") 2.1 \\\"颜色\\\"与\\\"线型\\\" 2.2 \\\"点型\\\"  3. plt.plot(x, y, \\\"格式控制字符串\\\", =参数) 训练过程中每个epoch都输出当前轮结果,输出数据保存在

    2024年02月06日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包