ilr normalize isometric log-ratio transformation

这篇具有很好参考价值的文章主要介绍了ilr normalize isometric log-ratio transformation。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

visium_heart/st_snRNAseq/05_colocalization/create_niches_ct.R at 5b30c7e497e06688a8448afd8d069d2fa70ebcd2 · saezlab/visium_heart (github.com) 更多内容,关注微信:生信小博士

The ILR (Isometric Log-Ratio) transformation is used in the analysis of compositional data. Any given observation is a set of positive values summing to unity, such as the proportions of chemicals in a mixture or proportions of total time spent in various activities. The sum-to-unity invariant implies that although there may be k≥2�≥2 components to each observation, there are only k−1�−1 functionally independent values. (Geometrically, the observations lie on a k−1�−1-dimensional simplex in k�-dimensional Euclidean space Rk��. This simplicial nature is manifest in the triangular shapes of the scatterplots of simulated data shown below.)

Typically, the distributions of the components become "nicer" when log transformed. This transformation can be scaled by dividing all values in an observation by their geometric mean before taking the logs.ilr normalize isometric log-ratio transformation,1024程序员节

ilr数据输入要求:

ilr normalize isometric log-ratio transformation,1024程序员节

 
  baseILR <- ilrBase(x = integrated_compositions,
                     method = "basic")
  head(  baseILR)
  cell_ilr <- as.matrix(ilr(integrated_compositions, baseILR))
  colnames(cell_ilr) <- paste0("ILR_", 1:ncol(cell_ilr))
  
  print(head(cell_ilr)[,1:9])
  

 ilr normalize isometric log-ratio transformation,1024程序员节

ilr normalize isometric log-ratio transformation,1024程序员节

 umap图

comp_umap <- umap(cell_ilr, 
                  n_neighbors = 30, n_epochs = 1000) %>%
  as.data.frame() %>%
  mutate(row_id = rownames(cell_ilr))

head(atlas_meta)

comp_umap %>%
  left_join(atlas_meta, by = c("row_id")) %>%
  ggplot(aes(x = V1, y = V2, 
             color = opt_clust_integrated)) +
  ggrastr::geom_point_rast(size = 0.3) +
  theme_classic() +
  xlab("UMAP1") +
  ylab("UMAP2")+

  theme(legend.text = element_text(size = 14))

ilr normalize isometric log-ratio transformation,1024程序员节

 
comp_umap %>%
  left_join(atlas_meta, by = c("row_id")) %>%
  ggplot(aes(x = V1, y = V2, 
             color = orig.ident)) +
  ggrastr::geom_point_rast(size = 0.3) +
  theme_classic() +
  xlab("UMAP1") +
  ylab("UMAP2")+
  
  theme(legend.text = element_text(size = 14))ilr normalize isometric log-ratio transformation,1024程序员节文章来源地址https://www.toymoban.com/news/detail-720771.html

到了这里,关于ilr normalize isometric log-ratio transformation的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包