用python的爬虫爬取数据真的很简单,只要掌握这六步就好,也不复杂。以前还以为爬虫很难,结果一上手,从初学到把东西爬下来,一个小时都不到就解决了。
Python爬虫六部曲
第一步:安装requests库和BeautifulSoup库
在程序中两个库的书写是这样的:
import` `requests``from` `bs4 ``import` `BeautifulSoup
由于我使用的是pycharm进行的python编程。所以我就讲讲在pycharm上安装这两个库的方法。在主页面文件选项下,找到设置。进一步找到项目解释器。之后在所选框中,点击软件包上的+号就可以进行查询插件安装了。有过编译器插件安装的hxd估计会比较好入手。具体情况就如下图所示。
第二步:获取爬虫所需的header和cookie
我写了一个爬取微博热搜的爬虫程序,这里就直接以它为例吧。获取header和cookie是一个爬虫程序必须的,它直接决定了爬虫程序能不能准确的找到网页位置进行爬取。
首先进入微博热搜的页面,按下F12,就会出现网页的js语言设计部分。如下图所示。找到网页上的Network部分。然后按下ctrl+R刷新页面。如果,进行就有文件信息,就不用刷新了,当然刷新了也没啥问题。然后,我们浏览Name这部分,找到我们想要爬取的文件,鼠标右键,选择copy,复制下网页的URL。就如下图所示。
复制好URL后,我们就进入一个网页Convert curl commands to code。这个网页可以根据你复制的URL,自动生成header和cookie,如下图。生成的header和cookie,直接复制走就行,粘贴到程序中。
#爬虫头数据``cookies ``=` `{`` ``'SINAGLOBAL'``: ``'6797875236621.702.1603159218040'``,`` ``'SUB'``: ``'_2AkMXbqMSf8NxqwJRmfkTzmnhboh1ygvEieKhMlLJJRMxHRl-yT9jqmg8tRB6PO6N_Rc_2FhPeZF2iThYO9DfkLUGpv4V'``,`` ``'SUBP'``: ``'0033WrSXqPxfM72-Ws9jqgMF55529P9D9Wh-nU-QNDs1Fu27p6nmwwiJ'``,`` ``'_s_tentry'``: ``'www.baidu.com'``,`` ``'UOR'``: ``'www.hfut.edu.cn,widget.weibo.com,www.baidu.com'``,`` ``'Apache'``: ``'7782025452543.054.1635925669528'``,`` ``'ULV'``: ``'1635925669554:15:1:1:7782025452543.054.1635925669528:1627316870256'``,``}``headers ``=` `{`` ``'Connection'``: ``'keep-alive'``,`` ``'Cache-Control'``: ``'max-age=0'``,`` ``'Upgrade-Insecure-Requests'``: ``'1'``,`` ``'User-Agent'``: ``'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36 SLBrowser/7.0.0.6241 SLBChan/25'``,`` ``'Accept'``: ``'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9'``,`` ``'Sec-Fetch-Site'``: ``'cross-site'``,`` ``'Sec-Fetch-Mode'``: ``'navigate'``,`` ``'Sec-Fetch-User'``: ``'?1'``,`` ``'Sec-Fetch-Dest'``: ``'document'``,`` ``'Accept-Language'``: ``'zh-CN,zh;q=0.9'``,``}``params ``=` `(`` ``(``'cate'``, ``'realtimehot'``),``)
复制到程序中就像这样。这是微博热搜的请求头。
第三步:获取网页
我们将header和cookie搞到手后,就可以将它复制到我们的程序里。之后,使用request请求,就可以获取到网页了。
#获取网页``response ``=` `requests.get(``'https://s.weibo.com/top/summary'``, headers``=``headers, params``=``params, cookies``=``cookies)
第四步:解析网页
这个时候,我们需要回到网页。同样按下F12,找到网页的Elements部分。用左上角的小框带箭头的标志,如下图,点击网页内容,这个时候网页就会自动在右边显示出你获取网页部分对应的代码。
如上图所示,我们在找到想要爬取的页面部分的网页代码后,将鼠标放置于代码上,右键,copy到selector部分。就如上图所示。
第五步:分析得到的信息,简化地址
其实刚才复制的selector就相当于网页上对应部分存放的地址。由于我们需要的是网页上的一类信息,所以我们需要对获取的地址进行分析,提取。当然,就用那个地址也不是不行,就是只能获取到你选择的网页上的那部分内容。
#pl_top_realtimehot > table > tbody > tr:nth-child(1) > td.td-02 > a``#pl_top_realtimehot > table > tbody > tr:nth-child(2) > td.td-02 > a``#pl_top_realtimehot > table > tbody > tr:nth-child(9) > td.td-02 > a
这是我获取的三条地址,可以发现三个地址有很多相同的地方,唯一不同的地方就是tr部分。由于tr是网页标签,后面的部分就是其补充的部分,也就是子类选择器。可以推断出,该类信息,就是存储在tr的子类中,我们直接对tr进行信息提取,就可以获取到该部分对应的所有信息。所以提炼后的地址为:
#pl_top_realtimehot > table > tbody > tr > td.td-02 > a
这个过程对js类语言有一定了解的hxd估计会更好处理。不过没有js类语言基础也没关系,主要步骤就是,保留相同的部分就行,慢慢的试,总会对的。
第六步:爬取内容,清洗数据
这一步完成后,我们就可以直接爬取数据了。用一个标签存储上面提炼出的像地址一样的东西。标签就会拉取到我们想获得的网页内容。
#爬取内容``content``=``"#pl_top_realtimehot > table > tbody > tr > td.td-02 > a"
之后我们就要soup和text过滤掉不必要的信息,比如js类语言,排除这类语言对于信息受众阅读的干扰。这样我们就成功的将信息,爬取下来了。
fo ``=` `open``(``"./微博热搜.txt"``,``'a'``,encoding``=``"utf-8"``)``a``=``soup.select(content)``for` `i ``in` `range``(``0``,``len``(a)):`` ``a[i] ``=` `a[i].text`` ``fo.write(a[i]``+``'\n'``)``fo.close()
我是将数据存储到了文件夹中,所以会有wirte带来的写的操作。想把数据保存在哪里,或者想怎么用,就看读者自己了。
爬取微博热搜的代码实例以及结果展示:
import` `os``import` `requests``from` `bs4 ``import` `BeautifulSoup``#爬虫头数据``cookies ``=` `{`` ``'SINAGLOBAL'``: ``'6797875236621.702.1603159218040'``,`` ``'SUB'``: ``'_2AkMXbqMSf8NxqwJRmfkTzmnhboh1ygvEieKhMlLJJRMxHRl-yT9jqmg8tRB6PO6N_Rc_2FhPeZF2iThYO9DfkLUGpv4V'``,`` ``'SUBP'``: ``'0033WrSXqPxfM72-Ws9jqgMF55529P9D9Wh-nU-QNDs1Fu27p6nmwwiJ'``,`` ``'_s_tentry'``: ``'www.baidu.com'``,`` ``'UOR'``: ``'www.hfut.edu.cn,widget.weibo.com,www.baidu.com'``,`` ``'Apache'``: ``'7782025452543.054.1635925669528'``,`` ``'ULV'``: ``'1635925669554:15:1:1:7782025452543.054.1635925669528:1627316870256'``,``}``headers ``=` `{`` ``'Connection'``: ``'keep-alive'``,`` ``'Cache-Control'``: ``'max-age=0'``,`` ``'Upgrade-Insecure-Requests'``: ``'1'``,`` ``'User-Agent'``: ``'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36 SLBrowser/7.0.0.6241 SLBChan/25'``,`` ``'Accept'``: ``'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9'``,`` ``'Sec-Fetch-Site'``: ``'cross-site'``,`` ``'Sec-Fetch-Mode'``: ``'navigate'``,`` ``'Sec-Fetch-User'``: ``'?1'``,`` ``'Sec-Fetch-Dest'``: ``'document'``,`` ``'Accept-Language'``: ``'zh-CN,zh;q=0.9'``,``}``params ``=` `(`` ``(``'cate'``, ``'realtimehot'``),``)``#数据存储``fo ``=` `open``(``"./微博热搜.txt"``,``'a'``,encoding``=``"utf-8"``)``#获取网页``response ``=` `requests.get(``'https://s.weibo.com/top/summary'``, headers``=``headers, params``=``params, cookies``=``cookies)``#解析网页``response.encoding``=``'utf-8'``soup ``=` `BeautifulSoup(response.text, ``'html.parser'``)``#爬取内容``content``=``"#pl_top_realtimehot > table > tbody > tr > td.td-02 > a"``#清洗数据``a``=``soup.select(content)``for` `i ``in` `range``(``0``,``len``(a)):`` ``a[i] ``=` `a[i].text`` ``fo.write(a[i]``+``'\n'``)``fo.close()
总结
到此这篇关于如何用六步教会你使用Python爬虫爬取数据的文章就介绍到这了!
如果你也喜欢编程,想通过学习Python转行、做副业或者提升工作效率,我也为大家整理了一份 【最新全套Python学习资料】一定对你有用!
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python课程视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
四、清华编程大佬出品《漫画看学Python》
用通俗易懂的漫画,来教你学习Python,让你更容易记住,并且不会枯燥乏味。
五、Python实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、互联网企业面试真题
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
文章来源:https://www.toymoban.com/news/detail-720893.html
这份完整版的Python全套学习资料已经上传至CSDN官方,朋友们如果需要可以点击下方链接费获取【保证100%免费】
文章来源地址https://www.toymoban.com/news/detail-720893.html
到了这里,关于六个步骤学会使用Python爬虫爬取数据(爬虫爬取微博实战)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!