【数据结构】二叉树链式结构的实现(三)

这篇具有很好参考价值的文章主要介绍了【数据结构】二叉树链式结构的实现(三)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一,二叉树的链式结构

二,二叉链的接口实现

        1,二叉链的创建

        2,接口函数

        3,动态创立新结点

        4,创建二叉树

        5,前序遍历

        6,中序遍历

        7,后序遍历

三,结点个数以及高度等

        1,接口函数

        2,结点个数

        3,叶子结点个数

        4,二叉树高度

        5,二叉树第k层结点个数

        6,二叉树查找值为x的结点


一,二叉树的链式结构

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系;

通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。

链式结构又分为二叉链和三叉链,这里我们学习二叉链;

 二叉树是:

1,空树

2,非空:根节点,根节点的左子树、根节点的右子树组成的。

【数据结构】二叉树链式结构的实现(三),数据结构

从图示中可以看出,二叉树定义是递归式的也称递归树,因此后序基本操作中基本都是按照该概念实现的;

 二叉链结构图示;

【数据结构】二叉树链式结构的实现(三),数据结构

二,二叉链的接口实现

        1,二叉链的创建

typedef int BTDataType;
//二叉链
typedef struct BinaryTreeNode
{
	BTDataType data; // 当前结点值域	
	struct BinaryTreeNode* left; // 指向当前结点左孩子
	struct BinaryTreeNode* right; // 指向当前结点右孩子
}BTNode;

首先创建一个结构体表示二叉链data是当前结点的值域,BTDataType是储存的值的数据类型;

left是指向当前结点左孩子right是指向当前结点右孩子

这里的BTDataTypeint的重命名,也可以说是数据类型的重命名,这样统一化方便后续更改;

        2,接口函数

//动态创立新结点
BTNode* BuyNode(BTDataType x);
//创建二叉树
BTNode* GreatBTree();
//前序遍历
void PrevOrder(BTNode* root);
//中序遍历
void InOrder(BTNode* root);
//后序遍历
void PostOrder(BTNode* root);

这是以上要实现的接口函数;

        3,动态创立新结点

//动态创立新结点
BTNode* BuyNode(BTDataType x)
{
	BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));
	assert(newnode);
	newnode->data = x;
	newnode->left = NULL;
	newnode->right = NULL;
	return newnode;
}

后面创立新结点时直接调用此函数,一定要向堆区申请空间,这样函数结束空间会保留不会被回收;

data赋新值,leftright都指向空,再返回结点指针即可;

        4,创建二叉树

//创建二叉树
BTNode* GreatBTree()
{
	BTNode* node1 = BuyNode(1);
	BTNode* node2 = BuyNode(2);
	BTNode* node3 = BuyNode(3);
	BTNode* node4 = BuyNode(4);
	BTNode* node5 = BuyNode(5);
	BTNode* node6 = BuyNode(6);

	node1->left = node2;
	node1->right = node4;
	node2->left = node3;
	node4->left = node5;
	node4->right = node6;

	return node1;
}

然后我们申请结点来构造二叉树,通过链接将新结点链接起来;

创建的二叉树结构图示如下:

【数据结构】二叉树链式结构的实现(三),数据结构

        5,前序遍历

//前序遍历
void PrevOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}

	printf("%d ", root->data);
	PrevOrder(root->left);
	PrevOrder(root->right);
}

二叉树的前序,中序,后续遍历都是同一种思路:

1. 前序遍历(Preorder Traversal 亦称先序遍历)——根结点---->左子树--->右子树

2. 中序遍历(Inorder Traversal)——左子树--->根结点--->右子树

3. 后序遍历(Postorder Traversal)——左子树--->右子树--->根结点

这里要用到递归思想:这里NULLN表示,建议画图来理解,一层一层遍历下去;

【数据结构】二叉树链式结构的实现(三),数据结构

前序遍历:

先访问根结点(1)然后访问其左子树(2)打印 1

此时根结点为(2)然后访问其左子树(3)打印1 2

此时根结点为(3)然后访问其左子树(NULL)打印1 2 3

此时根结点为(NULL)return NULL到(3),然后访问(3)的右子树(NULL)打印1 2 3 N

此时根结点为(NULL)return NULL到(3),此时对(3)也就是对(2)的左子树的访问结束了,然后访问(2)的右子树(NULL);打印1 2 3 N N

此时根结点为(NULL)return NULL到(2),此时对(2)也就是对(1)的左子树访问结束了,然后访问(1)的右子树(4)打印1 2 3 N N N

此时根结点为(4)然后访问其左子树(5)打印1 2 3 N N N 4

此时根结点为(5)然后访问其左子树(NULL)打印1 2 3 N N N 4 5

此时根结点为(NULL)return NULL到(5)然后访问(5)的右子树(NULL)打印1 2 3 N N N 4 5 N

此时根结点为(NULL)return NULL到(5)此时对(5)也就是对(4)的左子树的访问结束了,然后访问(4)的右子树(6)打印 1 2 3 N N N 4 5 N N

此时根结点为(6)然后访问其左子树(NULL)打印1 2 3 N N N 4 5 N N 6

此时根结点为(NULL)return NULL到(6)然后访问(6)的右子树(NULL)打印1 2 3 N N N 4 5 N N 6 N

此时根结点为(NULL)return NULL到(6),此时对(6)也就是对(4)的右子树的访问结束了,此时对(4)也就是对(1)的右子树的访问结束了,此时对(1)的访问也结束了,前序遍历也就结束了;打印1 2 3 N N N 4 5 N N 6 N N

图解思路示例:

    【数据结构】二叉树链式结构的实现(三),数据结构

BTNode* root = GreatBTree();
//前序遍历
PrevOrder(root);

【数据结构】二叉树链式结构的实现(三),数据结构

这就是前序遍历;

        6,中序遍历

//中序遍历
void InOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}

	InOrder(root->left);
	printf("%d ", root->data);
	InOrder(root->right);
}

中序遍历:左子树--->根结点--->右子树

跟前序遍历思路一致,就是换了一下访问的顺序,按照前序遍历的思路来就完事了;

//中序遍历
InOrder(root);
printf("\n");

【数据结构】二叉树链式结构的实现(三),数据结构

        7,后序遍历

//后序遍历
void PostOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}

	PostOrder(root->left);
	PostOrder(root->right);
	printf("%d ", root->data);
}

后序遍历:左子树--->右子树--->根结点

思路还是一致的,就是换了一下访问顺序,前,中,后序遍历的思路都是一致的,只要搞清楚其中一个就全部拿捏了;

//后续遍历
PostOrder(root);
printf("\n");

【数据结构】二叉树链式结构的实现(三),数据结构 这里对二叉链的基础遍历就实现完全了,有人说还有一个层序遍历,这个遍历需要用到队列,目前C语言阶段实现太过于繁琐,后序博主会补上;

三,结点个数以及高度等

像此类问题也都是递归问题,更加看重我们对函数栈帧的理解;

        1,接口函数

//结点个数
int	SumNode(BTNode* root);
//叶子结点个数
int LeafNode(BTNode* root);
//二叉树高度
int HeightTree(BTNode* root);
//二叉树第k层结点个数
int BTreeLeveSize(BTNode* root, int k);
//二叉树查找值为x的结点
BTNode* BTreeFine(BTNode* root, int x);

以上是要实现的函数;

        2,结点个数

//结点个数
int SumNode(BTNode* root)
{
	return root == NULL ? 0 : SumNode(root->left) + SumNode(root->right) + 1;
}

递归其实说难也难,说不难也不难,是有技巧在里面的;

【数据结构】二叉树链式结构的实现(三),数据结构

1,大事化小:根结点为(1)的二叉树的结点总和==>左子树(2)的结点总和加上右子树(4)的结点总和再加上本身的结点个数1,然后根结点为(2)的结点总和==>左子树(3)的总和加上NULL1,这就是规律;【(1)=(2)+(4)+1 】

2,结束条件,当结点为NULL时返回0

//结点个数
printf("%d\n", SumNode(root));

【数据结构】二叉树链式结构的实现(三),数据结构

        3,叶子结点个数

//叶子结点个数
int LeafNode(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	if (root->left==NULL && root->right==NULL)
	{
		return 1;
	}
	else
	{
		return LeafNode(root->left) + LeafNode(root->right);
	}
}

 【数据结构】二叉树链式结构的实现(三),数据结构

大事化小:求根结点为(1)的二叉树的叶子节点的个数==>其左子树(2)加上其右子树(4)的叶子节点的个数;【(1)=(2)+(4)

结束条件:当结点为NULL时返回0,当结点的左右子树都为NULL时返回1;

        4,二叉树高度

//二叉树高度
int HeightTree(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	int left = HeightTree(root->left);
	int right = HeightTree(root->right);
	return left > right ? left + 1 : right + 1;
}

【数据结构】二叉树链式结构的实现(三),数据结构

大事化小:求根结点为(1)的二叉树的高度==>其左子树(2)与右子树(4)中高的一颗的高度加上本身的高度1;【(1)=(2)>(4)?(2)+1:(4)+1 】

结束条件:当结点为NULL时返回0;

//二叉树高度
printf("%d\n", HeightTree(root));

【数据结构】二叉树链式结构的实现(三),数据结构

        5,二叉树第k层结点个数

//二叉树第k层结点个数
int BTreeLeveSize(BTNode* root, int k)
{
	if (root == NULL)
	{
		return 0;
	}
	if (k == 1)
	{
		return 1;
	}
	return BTreeLeveSize(root->left, k - 1)  + BTreeLeveSize(root->right, k - 1);
}

【数据结构】二叉树链式结构的实现(三),数据结构

大事化小:求根结点为(1)的二叉树第K层的结点个数==>其左子树(2)加上右子树(4)中第K-1层结点的个数;【(1)=(2)+(4)

结束条件:当结点为NULL时返回0,K等于1时返回1;

//二叉树第k层结点个数
printf("%d\n", BTreeLeveSize(root,3));

【数据结构】二叉树链式结构的实现(三),数据结构

        6,二叉树查找值为x的结点

//二叉树查找值为x的结点
BTNode* BTreeFine(BTNode* root, int x)
{
	if (root == NULL)
	{
		return NULL;
	}
	if (root->data == x)
	{
		return root;
	}
	if (BTreeFine(root->left, x) == NULL)
	{
		return BTreeFine(root->right, x);
	}
	else
	{
		return BTreeFine(root->left, x);
	}
}

【数据结构】二叉树链式结构的实现(三),数据结构

大事化小:查找根结点为(1)的二叉树中值为x的结点==>查找其左子树(2)与右子树(4)中值为x的结点;

结束条件:当结点为NULL时返回NULL当结点的值为x时返回该结点;

思路:所以当其中一个子树不为NULL时就是所求的结点,如果左子树不为空则返回左子树的结点,否则返回右子树的结点,如果左右都为空那也返回右子树的结点;

//二叉树查找值为x的结点
BTNode* ret = BTreeFine(root, 6);
printf("%d\n", ret->data);

ret = BTreeFine(root, 3);
printf("%d\n", ret->data);

【数据结构】二叉树链式结构的实现(三),数据结构

到这里就结束了,通过这些题目也充分的认识了二叉树(递归树),这就是递归算法,还是要多画图来理解,递归基层的知识就是函数栈帧的创建与销毁

第三阶段就到这里了,这阶段带大家了解一下二叉树(递归树)的递归思想;

后面博主会陆续更新;

如有不足之处欢迎来补充交流!

完结。。文章来源地址https://www.toymoban.com/news/detail-720957.html


到了这里,关于【数据结构】二叉树链式结构的实现(三)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构】二叉树链式结构的实现(三)

    目录 一,二叉树的链式结构 二,二叉链的接口实现         1,二叉链的创建         2,接口函数         3,动态创立新结点         4,创建二叉树         5,前序遍历         6,中序遍历         7,后序遍历 三,结点个数以及高度等      

    2024年02月08日
    浏览(29)
  • 【数据结构】二叉树的链式结构的实现 -- 详解

    在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。为了降低大家学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习。 注意 :上述代码并不是创建二叉树的方式。 学习二叉树结构,最简单的方式就是遍历。所谓

    2024年02月12日
    浏览(33)
  • 数据结构(C语言实现)——二叉树的概念及二叉树顺序结构和链式结构的实现(堆排序+TOP-K问题+链式二叉树相关操作)

    前面学习了数据结构中线性结构的几种结构,顺序表,链表,栈和队列等,今天我们来学习一种非线性的数据结构——树。由于二叉树是数据结构中的一个重点和难点,所以本文着重介绍二叉树的相关概念和性质,以及二叉树的应用。 树是一种非线性的数据结构,它是由n(

    2023年04月21日
    浏览(38)
  • 模拟实现链式二叉树及其结构学习——【数据结构】

    W...Y的主页 😊 代码仓库分享 💕 之前我们实现了用顺序表完成二叉树(也就是堆),顺序二叉树的实际作用就是解决堆排序以及Topk问题。 今天我们要学习的内容是链式二叉树,并且实现链式二叉树,这篇博客与递归息息相关! 目录 链式存储 二叉树链式结构的实现 链式二叉

    2024年02月07日
    浏览(33)
  • 【数据结构】二叉树链式结构的实现及其常见操作

    目录 1.手搓二叉树 2.二叉树的遍历 2.1前序、中序以及后序遍历 2.2二叉树的层序遍历 3.二叉树的常见操作 3.1求二叉树节点数量 3.2求二叉树叶子节点数量 3.3求二叉树第k层节点个数 3.3求二叉树的深度 3.4二叉树查找值为x的节点 4.二叉树的销毁 在学习二叉树的基本操作前,需先要

    2024年02月12日
    浏览(39)
  • 【数据结构】二叉树的链式实现及遍历

    后文所有代码中的二叉树结点: 前,中,后序遍历都可以采用分治递归的思想解决,将根节点和它的孩子结点分别处理。 此处仅利用递归展开图分析前序遍历,中序和后序也是相同的思想: 层序遍历需要利用队列来进行,如果二叉树跟结点不为空,则让 指向它的一个指针入

    2024年02月07日
    浏览(41)
  • 数据结构——二叉树的链式存储的实现

                             InitBiTree(BiTree T)——初始化二叉树。                         CreateBiTree(BiTree T)——先序遍历的顺序建立二叉链表。                         PreOrderTraverse(BiTree T)——先序遍历。                         

    2024年02月04日
    浏览(45)
  • 数据结构入门(C语言版)二叉树链式结构的实现

    简单回顾一下二叉树的 概念: ★ 空树 ★非空:根节点,根节点的左子树、根节点的右子树组成的。 从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。 下面我们先看二叉树的结构体定义以及创建 首先结构体的定义是元素本身,以

    2023年04月23日
    浏览(40)
  • 数据结构第六课 -----链式二叉树的实现

    🎂 ✨✨✨✨✨✨🍧🍧🍧🍧🍧🍧🍧🎂 ​🎂 作者介绍: 🎂🎂 🎂 🎉🎉🎉🎉🎉🎉🎉 🎂 🎂作者id:老秦包你会, 🎂 简单介绍:🎂🎂🎂🎂🎂🎂🎂🎂🎂🎂🎂🎂🎂🎂🎂 喜欢学习C语言和python等编程语言,是一位爱分享的博主,有兴趣的小可爱可以来互讨 🎂🎂

    2024年02月03日
    浏览(42)
  • 【数据结构初阶】八、非线性表里的二叉树(二叉树的实现 -- C语言链式结构)

    ========================================================================= 相关代码gitee自取 : C语言学习日记: 加油努力 (gitee.com)  ========================================================================= 接上期 : 【数据结构初阶】七、非线性表里的二叉树(堆的实现 -- C语言顺序结构)-CSDN博客  ==========

    2024年02月08日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包