06 MIT线性代数-线性无关,基和维数Independence, basis, and dimension

这篇具有很好参考价值的文章主要介绍了06 MIT线性代数-线性无关,基和维数Independence, basis, and dimension。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 线性无关 Independence

Suppose A is m by n with m<n (more unknowns than equations)

Then there are nonzero solutions to Ax=0 

Reason: there will be free variables! A中具有至少一个自由变量,那么Ax=0一定具有非零解。A的列向量可以线性组合得到零向量,所以A的列向量是线性相关的。

independence:vectors X1, X2,...,Xn are independent if no combination gives zero vectors (expect the zero comb. all Ci =0)

06 MIT线性代数-线性无关,基和维数Independence, basis, and dimension,线性代数,线性代数,机器学习,人工智能 

Repeat when v1,v2,..., vn are columns of A 

they are independent if nullspace of A is zero vector , rank=n , N(A)={0}, no free variables 若这些向量作为列向量构成矩阵A,则方程Ax=0只有零解x=0,或称矩阵A的零空间只有零向量

 they are dependent if Ac=0 for some nonzero C, rank<n , Yes free variables

结论:

此矩阵构成的方程Ax=0必有非零解,即三个向量线性相关

矩阵A的列向量为线性无关,则A所有的列均为主元列,没有自由列,矩阵的秩为n。

A的列向量为线性相关,则矩阵的秩小于n,并且存在自由列

2. 张成空间 Spanning a space

vectors v1, v2, v3, ..., vn span a space means: The space consists of all combs. of those vectors 

3. 基与维数Basis &Dimension

Basis for a space is a sequance of vectors v1, v2, ..., vd with 2 properties:

1. they are independent

2. they span the space

空间的基告诉我们了空间的一切信息

Example: Space is R3 

standard: one basis 06 MIT线性代数-线性无关,基和维数Independence, basis, and dimension,线性代数,线性代数,机器学习,人工智能

Rn : n vectors give basis if the nxn matrix with those cols is invertible

3.1 子空间的基 Basis for a subspace

06 MIT线性代数-线性无关,基和维数Independence, basis, and dimension,线性代数,线性代数,机器学习,人工智能 可以张成R3中的一个平面,但是它们无法成为R3空间的一组基

Given a space: Every basis for the space has the same number of vectors (dimension of the space)

3.2 列空间和零空间的基 Basis of a column space and nullspace

06 MIT线性代数-线性无关,基和维数Independence, basis, and dimension,线性代数,线性代数,机器学习,人工智能

讨论列空间:

矩阵A的四个列向量张成了矩阵A的列空间,其中第3列和第4列与前两列线性相关,而前两个列向量线性无关。因此前两列为主元列。他们组成了列空间C(A)的一组基。矩阵的秩为2。

rank矩阵的秩r=# of pivot columns 矩阵主元列的数目=dimension of C(A)列空间的维数

讨论零空间:

06 MIT线性代数-线性无关,基和维数Independence, basis, and dimension,线性代数,线性代数,机器学习,人工智能必然在零空间N(A)之内

dim N(A)零空间的维数=自由列的数目# of free variables=n-r文章来源地址https://www.toymoban.com/news/detail-721377.html

到了这里,关于06 MIT线性代数-线性无关,基和维数Independence, basis, and dimension的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【线性代数】两个向量组等价,其中一个向量组线性无关,另一个向量组也是线性无关吗?

    两个向量组等价,其中一个向量组线性无关,另一个向量组也是线性无关吗? 不一定,当两个向量组中的向量个数也相同时,结论才成立.若向量个数不相同,结论不成立. 例如: 向量组一:(1,0),(0,1) 向量组二:(1,0),(0,1),(1,1) 两个向量组等价,向量组一线性无关,向量组二线性相关 参考

    2024年02月02日
    浏览(37)
  • 线性代数|证明:矩阵不同特征值对应的特征向量线性无关

    定理 1 设 λ 1 , λ 2 , ⋯   , λ m lambda_1,lambda_2,cdots,lambda_m λ 1 ​ , λ 2 ​ , ⋯ , λ m ​ 是方阵 A boldsymbol{A} A 的 m m m 个特征值, p 1 , p 2 , ⋯   , p m boldsymbol{p}_1,boldsymbol{p}_2,cdots,boldsymbol{p}_m p 1 ​ , p 2 ​ , ⋯ , p m ​ 依次是与之对应的特征向量,如果 λ 1 , λ 2 , ⋯   , λ

    2024年02月07日
    浏览(46)
  • MIT线性代数详细笔记(更新中)

    2022.10.15 ~ 2022.11. 立个flag,每天一到两刷。 行图像: 对于行图像,n=2,即两方程两未知数,两条直线的交点就是方程的解。 列图像 该方程的目的是什么?         目的是寻找正确的线性组合。上图红框部分就是列向量的线性组合。 x=1,y=2的线性组合可以得出b。而所有的

    2024年02月15日
    浏览(29)
  • MIT_线性代数笔记:复习二

    正交矩阵 Q,用矩阵形式描述正交性质。 投影矩阵 P,最小二乘法,在方程无解时求“最优解”。 Gram-Schmidt 正交化——从任意一组基得到标准正交基,策略是从向量 中减去投影到其它向量方向的分量。 行列式 det(A) 三个性质定义了行列式,可以推导出之后的性质 4~10。 行列

    2024年01月23日
    浏览(38)
  • MIT线性代数笔记-第31讲-线性变换及对应矩阵

    线性变换相当于是矩阵的抽象表示,每个线性变换都对应着一个矩阵 例: 考虑一个变换 T T T ,使得平面上的一个向量投影为平面上的另一个向量,即 T : R 2 → R 2 T:R^2 to R^2 T : R 2 → R 2 ,如图: ​   图中有两个任意向量 v ⃗ , w ⃗ vec{v} , vec{w} v , w 和一条直线,作 v ⃗

    2024年02月03日
    浏览(41)
  • MIT线性代数-方程组的几何解释

    假设有一个方程组 A X = B AX=B A X = B 表示如下 2 x − y = 0 (1) 2x-y=0tag{1} 2 x − y = 0 ( 1 ) − x + 2 y = 3 (2) -x+2y=3tag{2} − x + 2 y = 3 ( 2 ) 矩阵表示如下: [ 2 − 1 − 1 2 ] [ x y ] = [ 0 3 ] (3) begin{bmatrix}2-1\\\\\\\\-12end{bmatrix}begin{bmatrix}x\\\\\\\\yend{bmatrix}=begin{bmatrix}0\\\\\\\\3end{bmatrix}tag{3} ​ 2 − 1 ​

    2024年04月15日
    浏览(36)
  • 线性代数 --- 张成(span),基底(basis)与向量空间的维数(dimension of vector space)(个人学习笔记)

    例一:         因为,w1与w2线性无关,且二者的第三分量都是0,所以只能张成一个二维平面。又因为w1和w2都是三维向量,所以,是三维空间中的一个二维平面。w1和w3线性相关,又都只有第一个分量起作用,所以只能张成一条直线。 例二: 基底不唯一: 例一: 例10中的

    2024年02月04日
    浏览(34)
  • MIT - 线性代数-LU_LDU分解|单位矩阵

    U为消元结果(行变换),L为行变换矩阵的逆矩阵 D为主元(Pivot)A的主对角线元素,在这里为2、3,U为对D做列变换使其得到LU中的U 为什么要写成A=LU而不是E21A=U呢?因为A=LU中L只包含行变换信息,E21A=U还有额外的数字 2×2 2 3×3 3×2=6 4×4 4×3×2=24 结论:单位矩阵的逆=转置矩阵(

    2024年01月23日
    浏览(36)
  • 05 MIT线性代数-转置,置换,向量空间Transposes, permutations, spaces

    execute row exchanges becomes PA = LU for any invertible A Permutations P = identity matrix with reordered rows m=n (n-1) ... (3) (2) (1) counts recordings, counts all nxn permuations 对于nxn矩阵存在着n!个置换矩阵 ,  对称矩阵    why? take transpose  向量空间对线性运算封闭,即空间内向量进行线性运算得到的向量仍在

    2024年02月08日
    浏览(43)
  • MIT线性代数笔记-第27讲-复数矩阵,快速傅里叶变换

    对于实矩阵而言,特征值为复数时,特征向量一定为复向量,由此引入对复向量的学习 求模长及内积 假定一个复向量 z ⃗ = [ z 1 z 2 ⋮ z n ] vec{z} = begin{bmatrix} z_1 \\\\ z_2 \\\\ vdots\\\\ z_n end{bmatrix} z = ​ z 1 ​ z 2 ​ ⋮ z n ​ ​ ​ ,其中 z 1 , z 2 , ⋯   , z n z_1 , z_2 , cdots , z_n z 1 ​

    2024年02月05日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包