基于ResNet34的花朵分类

这篇具有很好参考价值的文章主要介绍了基于ResNet34的花朵分类。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一.数据集准备

新建一个项目文件夹ResNet,并在里面建立data_set文件夹用来保存数据集,在data_set文件夹下创建新文件夹"flower_data",点击链接下载花分类数据集https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz,会下载一个压缩包,将它解压到flower_data文件夹下,执行"split_data.py"脚本自动将数据集划分成训练集train和验证集val。

基于ResNet34的花朵分类,pytorch分类实战,分类,数据挖掘,人工智能

 split.py如下:

import os
from shutil import copy, rmtree
import random


def mk_file(file_path: str):
    if os.path.exists(file_path):
        # 如果文件夹存在,则先删除原文件夹在重新创建
        rmtree(file_path)
    os.makedirs(file_path)


def main():
    # 保证随机可复现
    random.seed(0)

    # 将数据集中10%的数据划分到验证集中
    split_rate = 0.1

    # 指向你解压后的flower_photos文件夹
    cwd = os.getcwd()
    data_root = os.path.join(cwd, "flower_data")
    origin_flower_path = os.path.join(data_root, "flower_photos")
    assert os.path.exists(origin_flower_path), "path '{}' does not exist.".format(origin_flower_path)

    flower_class = [cla for cla in os.listdir(origin_flower_path)
                    if os.path.isdir(os.path.join(origin_flower_path, cla))]

    # 建立保存训练集的文件夹
    train_root = os.path.join(data_root, "train")
    mk_file(train_root)
    for cla in flower_class:
        # 建立每个类别对应的文件夹
        mk_file(os.path.join(train_root, cla))

    # 建立保存验证集的文件夹
    val_root = os.path.join(data_root, "val")
    mk_file(val_root)
    for cla in flower_class:
        # 建立每个类别对应的文件夹
        mk_file(os.path.join(val_root, cla))

    for cla in flower_class:
        cla_path = os.path.join(origin_flower_path, cla)
        images = os.listdir(cla_path)
        num = len(images)
        # 随机采样验证集的索引
        eval_index = random.sample(images, k=int(num*split_rate))
        for index, image in enumerate(images):
            if image in eval_index:
                # 将分配至验证集中的文件复制到相应目录
                image_path = os.path.join(cla_path, image)
                new_path = os.path.join(val_root, cla)
                copy(image_path, new_path)
            else:
                # 将分配至训练集中的文件复制到相应目录
                image_path = os.path.join(cla_path, image)
                new_path = os.path.join(train_root, cla)
                copy(image_path, new_path)
            print("\r[{}] processing [{}/{}]".format(cla, index+1, num), end="")  # processing bar
        print()

    print("processing done!")


if __name__ == '__main__':
    main()

之后会在文件夹下生成train和val数据集,到此,完成了数据集的准备。

 二.定义网络

新建model.py,参照ResNet的网络结构和pytorch官方给出的代码,对代码进行略微的修改即可,首先定义了两个类BasicBlock和Bottleneck,分别对应着ResNet18、34和ResNet50、101、152,从下面这个图就可以区别开来。

可见,18和34层的网络,他们的conv2_x,conv3_x,conv4_x,conv5_x是相同的,不同的是每一个block的数量([2 2 2 2]和[3 4 6 3]),50和101和152层的网络,多了1*1卷积核,block数量也不尽相同。

基于ResNet34的花朵分类,pytorch分类实战,分类,数据挖掘,人工智能

接着定义了ResNet类,进行前向传播。对于34层的网络(这里借用了知乎牧酱老哥的图,18和34的block相同,所以用18的进行讲解),conv2_x和conv3_x对应的残差块对应的残差快在右侧展示出来(可以注意一下stride),当计算特征图尺寸时,要特别注意。在下方代码计算尺寸的部分我都进行了注释。

基于ResNet34的花朵分类,pytorch分类实战,分类,数据挖掘,人工智能

基于ResNet34的花朵分类,pytorch分类实战,分类,数据挖掘,人工智能

pytorch官方ResNet代码

修改后的train.py:

import torch.nn as nn
import torch


class BasicBlock(nn.Module):    #18 34层残差结构, 残差块
    expansion = 1

    def __init__(self, in_channel, out_channel, stride=1, downsample=None, **kwargs):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channel)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)
        self.downsample = downsample

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)    # 不为none,对应虚线残差结构(下需要1*1卷积调整维度),为none,对应实线残差结构(不需要1*1卷积)

        out = self.conv1(x)        
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)     
        out = self.bn2(out)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):    #50 101 152层残差结构
    """
    注意:原论文中,在虚线残差结构的主分支上,第一个1x1卷积层的步距是2,第二个3x3卷积层步距是1。
    但在pytorch官方实现过程中是第一个1x1卷积层的步距是1,第二个3x3卷积层步距是2,
    这么做的好处是能够在top1上提升大概0.5%的准确率。
    可参考Resnet v1.5 https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch
    """
    expansion = 4

    def __init__(self, in_channel, out_channel, stride=1, downsample=None, groups=1, width_per_group=64):
        super(Bottleneck, self).__init__()

        width = int(out_channel * (width_per_group / 64.)) * groups

        # squeeze channels
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width, kernel_size=1, stride=1, bias=False)  
        self.bn1 = nn.BatchNorm2d(width)
        # -----------------------------------------
        self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, groups=groups,
                               kernel_size=3, stride=stride, bias=False, padding=1)
        self.bn2 = nn.BatchNorm2d(width)
        # -----------------------------------------
        # unsqueeze channels
        self.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel*self.expansion, kernel_size=1, stride=1, bias=False)  
        self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample

    def forward(self, x):
        identity = x
        if self.downsample is not None:  # 不为none,对应虚线残差结构(下需要1*1卷积调整维度),为none,对应实线残差结构(不需要1*1卷积)
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        out += identity
        out = self.relu(out)

        return out


class ResNet(nn.Module):

    def __init__(self, block, blocks_num, num_classes=1000, include_top=True, groups=1, width_per_group=64):
        super(ResNet, self).__init__()
        self.include_top = include_top
        self.in_channel = 64

        self.groups = groups
        self.width_per_group = width_per_group

        # (channel height width)
        self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2, padding=3, bias=False) # (3 224 224) -> (64 112 112)
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)         # (64 112 112) -> (64 56 56)
        # 对于每一个block,第一次的两个卷积层stride=1和1,第二次stride=1和1
        self.layer1 = self._make_layer(block, 64, blocks_num[0])                # (64 56 56) -> (64 56 56)
        # 对于每一个block,第一次的两个卷积层stride=2和1,第二次stride=1和1
        self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)     # (64 56 56) -> (128 28 28)
        self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)     # (128 28 28) -> (256 14 14)
        self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)     # (256 28 28) -> (512 14 14)
        if self.include_top:
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))  # output size = (1, 1)
            self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

    def _make_layer(self, block, channel, block_num, stride=1):           # channel为当前block所使用的卷积核个数
        downsample = None 
        if stride != 1 or self.in_channel != channel * block.expansion:   # 18和32不满足判断条件,会跳过;50 101 152会执行这部分
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(channel * block.expansion))

        layers = []
        layers.append(block(self.in_channel,
                            channel,
                            downsample=downsample,
                            stride=stride,
                            groups=self.groups,
                            width_per_group=self.width_per_group))
        self.in_channel = channel * block.expansion

        for _ in range(1, block_num):
            layers.append(block(self.in_channel,
                                channel,
                                groups=self.groups,
                                width_per_group=self.width_per_group))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        if self.include_top:
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)

        return x


def resnet34(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnet34-333f7ec4.pth
    return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


def resnet50(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnet50-19c8e357.pth
    return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


def resnet101(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnet101-5d3b4d8f.pth
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)


def resnext50_32x4d(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth
    groups = 32
    width_per_group = 4
    return ResNet(Bottleneck, [3, 4, 6, 3],
                  num_classes=num_classes,
                  include_top=include_top,
                  groups=groups,
                  width_per_group=width_per_group)


def resnext101_32x8d(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth
    groups = 32
    width_per_group = 8
    return ResNet(Bottleneck, [3, 4, 23, 3],
                  num_classes=num_classes,
                  include_top=include_top,
                  groups=groups,
                  width_per_group=width_per_group)

if __name__ == "__main__":
    resnet = ResNet(BasicBlock, [3, 4, 6, 3], num_classes=5)
    in_data = torch.randn(1, 3, 224, 224)
    out = resnet(in_data)
    print(out)

完成网络的定义之后,可以单独执行一下这个文件,用来验证网络定义的是否正确。如果可以正确输出,就没问题。

在这里输出为

tensor([[-0.4490,  0.5792, -0.5026, -0.6024,  0.1399]],
grad_fn=<AddmmBackward0>)

说明网络定义正确。

三.开始训练

 加载数据集

首先定义一个字典,用于用于对train和val进行预处理,包括裁剪成224*224大小,训练集随机水平翻转(一般验证集不需要此操作),转换成张量,图像归一化。

然后利用DataLoader模块加载数据集,并设置batch_size为16,同时,设置数据加载器的工作进程数nw,加快速度。

import os
import sys
import json

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets
from torch.utils.data import DataLoader
from tqdm import tqdm

from model import resnet34


def main():
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"using {device} device.")

    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
        "val": transforms.Compose([transforms.Resize(256),
                                   transforms.CenterCrop(224),
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}

    # 获取数据集路径
    image_path = os.path.join(os.getcwd(), "data_set", "flower_data")
    assert os.path.exists(image_path), f"{image_path} path does not exist."
    # 加载数据集,准备读取
    train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"), transform=data_transform["train"])
    validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"), transform=data_transform["val"])

    nw = min([os.cpu_count(), 16 if 16 > 1 else 0, 8])  # number of workers,加速图像预处理
    print(f'Using {nw} dataloader workers every process')

    # 加载数据集
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=16, shuffle=True, num_workers=nw)
    validate_loader = torch.utils.data.DataLoader(validate_dataset, batch_size=16, shuffle=False, num_workers=nw)
    train_num = len(train_dataset)
    val_num = len(validate_dataset)
    print(f"using {train_num} images for training, {val_num} images for validation.")

生成json文件

将训练数据集的类别标签转换为字典格式,并将其写入名为'class_indices.json'的文件中。

  1. train_dataset中获取类别标签到索引的映射关系,存储在flower_list变量中。
  2. 使用列表推导式将flower_list中的键值对反转,得到一个新的字典cla_dict,其中键是原始类别标签,值是对应的索引。
  3. 使用json.dumps()函数将cla_dict转换为JSON格式的字符串,设置缩进为4个空格。
  4. 使用with open()语句以写入模式打开名为'class_indices.json'的文件,并将JSON字符串写入文件
   # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4} 雏菊 蒲公英 玫瑰 向日葵 郁金香
    # 从训练集中获取类别标签到索引的映射关系,存储在flower_list变量
    flower_list = train_dataset.class_to_idx
    # 使用列表推导式将flower_list中的键值对反转,得到一个新的字典cla_dict
    cla_dict = dict((val, key) for key, val in flower_list.items())
    # write dict into json file
    json_str = json.dumps(cla_dict, indent=4)
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)

加载预训练模型开始训练

首先定义网络对象net,在这里我们使用了迁移学习来使网络训练效果更好;使用net.fc = nn.Linear(in_channel, 5)设置输出类别数(这里为5);训练10轮,并使用train_bar = tqdm(train_loader, file=sys.stdout)来可视化训练进度条,之后再进行反向传播和参数更新;同时,每一轮训练完成都要进行学习率更新;之后开始对验证集进行计算精确度,完成后保存模型。

    # load pretrain weights
    # download url: https://download.pytorch.org/models/resnet34-333f7ec4.pth
    net = resnet34()
    model_weight_path = "./resnet34-pre.pth"
    assert os.path.exists(model_weight_path), f"file {model_weight_path} does not exist."
    net.load_state_dict(torch.load(model_weight_path, map_location='cpu'))

    # change fc layer structure
    in_channel = net.fc.in_features
    net.fc = nn.Linear(in_channel, 5)
    net.to(device)
    loss_function = nn.CrossEntropyLoss()
    optimizer = optim.Adam([p for p in net.parameters() if p.requires_grad], lr=0.0001)

    epochs = 10
    best_acc = 0.0
    train_steps = len(train_loader)
    for epoch in range(epochs):
        # train
        net.train()
        running_loss = 0.0
        train_bar = tqdm(train_loader, file=sys.stdout)
        for step, data in enumerate(train_bar):
            images, labels = data
            optimizer.zero_grad()
            logits = net(images.to(device))
            loss = loss_function(logits, labels.to(device))
            loss.backward()
            optimizer.step()

            # print statistics
            running_loss += loss.item()

            train_bar.desc = "train epoch[{epoch + 1}/{epochs}] loss:{loss:.3f}"

        # validate
        net.eval()
        acc = 0.0  # accumulate accurate number / epoch
        with torch.no_grad():
            val_bar = tqdm(validate_loader, file=sys.stdout)
            for val_data in val_bar:
                val_images, val_labels = val_data
                outputs = net(val_images.to(device))
                # loss = loss_function(outputs, test_labels)
                predict_y = torch.max(outputs, dim=1)[1]
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()

                val_bar.desc = f"valid epoch[{epoch + 1}/{epochs}]"

        val_accurate = acc / val_num
        print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
              (epoch + 1, running_loss / train_steps, val_accurate))

        if val_accurate > best_acc:
            best_acc = val_accurate
            torch.save(net, "./resnet.pth")

    print('Finished Training')

最后对代码进行整理,完整的train.py如下

import os
import sys
import json

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets
from torch.utils.data import DataLoader
from tqdm import tqdm

from model import resnet34


def main():
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"using {device} device.")

    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
        "val": transforms.Compose([transforms.Resize(256),
                                   transforms.CenterCrop(224),
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}

    # 获取数据集路径
    image_path = os.path.join(os.getcwd(), "data_set", "flower_data")
    assert os.path.exists(image_path), f"{image_path} path does not exist."
    # 加载数据集,准备读取
    train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"), transform=data_transform["train"])
    validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"), transform=data_transform["val"])

    nw = min([os.cpu_count(), 16 if 16 > 1 else 0, 8])  # number of workers,加速图像预处理
    print(f'Using {nw} dataloader workers every process')

    # 加载数据集
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=16, shuffle=True, num_workers=nw)
    validate_loader = torch.utils.data.DataLoader(validate_dataset, batch_size=16, shuffle=False, num_workers=nw)
    train_num = len(train_dataset)
    val_num = len(validate_dataset)
    print(f"using {train_num} images for training, {val_num} images for validation.")

    # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4} 雏菊 蒲公英 玫瑰 向日葵 郁金香
    # 从训练集中获取类别标签到索引的映射关系,存储在flower_list变量
    flower_list = train_dataset.class_to_idx
    # 使用列表推导式将flower_list中的键值对反转,得到一个新的字典cla_dict
    cla_dict = dict((val, key) for key, val in flower_list.items())
    # write dict into json file
    json_str = json.dumps(cla_dict, indent=4)
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)
    

    # load pretrain weights
    # download url: https://download.pytorch.org/models/resnet34-333f7ec4.pth
    net = resnet34()
    model_weight_path = "./resnet34-pre.pth"
    assert os.path.exists(model_weight_path), f"file {model_weight_path} does not exist."
    net.load_state_dict(torch.load(model_weight_path, map_location='cpu'))

    # change fc layer structure
    in_channel = net.fc.in_features
    net.fc = nn.Linear(in_channel, 5)
    net.to(device)
    loss_function = nn.CrossEntropyLoss()
    optimizer = optim.Adam([p for p in net.parameters() if p.requires_grad], lr=0.0001)

    epochs = 10
    best_acc = 0.0
    train_steps = len(train_loader)
    for epoch in range(epochs):
        # train
        net.train()
        running_loss = 0.0
        train_bar = tqdm(train_loader, file=sys.stdout)
        for step, data in enumerate(train_bar):
            images, labels = data
            optimizer.zero_grad()
            logits = net(images.to(device))
            loss = loss_function(logits, labels.to(device))
            loss.backward()
            optimizer.step()

            # print statistics
            running_loss += loss.item()

            train_bar.desc = "train epoch[{epoch + 1}/{epochs}] loss:{loss:.3f}"

        # validate
        net.eval()
        acc = 0.0  # accumulate accurate number / epoch
        with torch.no_grad():
            val_bar = tqdm(validate_loader, file=sys.stdout)
            for val_data in val_bar:
                val_images, val_labels = val_data
                outputs = net(val_images.to(device))
                # loss = loss_function(outputs, test_labels)
                predict_y = torch.max(outputs, dim=1)[1]
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()

                val_bar.desc = f"valid epoch[{epoch + 1}/{epochs}]"

        val_accurate = acc / val_num
        print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
              (epoch + 1, running_loss / train_steps, val_accurate))

        if val_accurate > best_acc:
            best_acc = val_accurate
            torch.save(net, "./resnet.pth")

    print('Finished Training')


if __name__ == '__main__':
    main()

四.模型预测

新建一个predict.py文件用于预测,将输入图像处理后转换成张量格式,img = torch.unsqueeze(img, dim=0)是在输入图像张量 img 的第一个维度上增加一个大小为1的维度,因此将图像张量的形状从 [通道数, 高度, 宽度 ] 转换为 [1, 通道数, 高度, 宽度]。然后加载模型进行预测,并打印出结果,同时可视化。

import os
import json

import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt

from model import resnet34


def main():
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    data_transform = transforms.Compose(
        [transforms.Resize(256),
         transforms.CenterCrop(224),
         transforms.ToTensor(),
         transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])

    # load image
    img = Image.open("./2536282942_b5ca27577e.jpg")
    plt.imshow(img)
    # [N, C, H, W]
    img = data_transform(img)
    # expand batch dimension
    # 在输入图像张量 img 的第一个维度上增加一个大小为1的维度
    # 将图像张量的形状从 [通道数, 高度, 宽度 ] 转换为 [1, 通道数, 高度, 宽度]
    img = torch.unsqueeze(img, dim=0)

    # read class_indict
    with open('./class_indices.json', "r") as f:
        class_indict = json.load(f)

    # create model
    model = resnet34(num_classes=5).to(device)
    model = torch.load("./resnet34.pth")

    # prediction
    model.eval()
    with torch.no_grad():
        # predict class
        output = torch.squeeze(model(img.to(device))).cpu()
        predict = torch.softmax(output, dim=0)
        predict_class = torch.argmax(predict).numpy()

    print_result = f"class: {class_indict[str(predict_class)]}   prob: {predict[predict_class].numpy():.3}"
    plt.title(print_result)
    for i in range(len(predict)):
        print(f"class: {class_indict[str(i)]:10}   prob: {predict[i].numpy():.3}")
    plt.show()


if __name__ == '__main__':
    main()

预测结果

基于ResNet34的花朵分类,pytorch分类实战,分类,数据挖掘,人工智能

五.模型可视化

将生成的pth文件导入netron工具,可视化结果为

基于ResNet34的花朵分类,pytorch分类实战,分类,数据挖掘,人工智能

发现很不清晰,因此将它转换成多用于嵌入式设备部署的onnx格式

编写onnx.py

import torch
import torchvision
from model import resnet34

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = resnet34(num_classes=5).to(device)
model=torch.load("/home/lm/Resnet/resnet34.pth")
model.eval()
example = torch.ones(1, 3, 244, 244)
example = example.to(device)
torch.onnx.export(model, example, "resnet34.onnx", verbose=True, opset_version=11)

  将生成的onnx文件导入,这样的可视化清晰了许多

基于ResNet34的花朵分类,pytorch分类实战,分类,数据挖掘,人工智能

 六.批量数据预测

现在新建一个dta文件夹,里面放入五类带预测的样本,编写代码完成对整个文件夹下所有样本的预测,即批量预测。

batch_predict.py如下:

import os
import json

import torch
from PIL import Image
from torchvision import transforms

from model import resnet34


def main():
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    data_transform = transforms.Compose(
        [transforms.Resize(256),
         transforms.CenterCrop(224),
         transforms.ToTensor(),
         transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])

    # load image
    # 指向需要遍历预测的图像文件夹
    imgs_root = "./data/imgs"
    # 读取指定文件夹下所有jpg图像路径
    img_path_list = [os.path.join(imgs_root, i) for i in os.listdir(imgs_root) if i.endswith(".jpg")]

    # read class_indict
    json_file = open('./class_indices.json', "r")
    class_indict = json.load(json_file)

    # create model
    model = resnet34(num_classes=5).to(device)
    model = torch.load("./resnet34.pth")

    # prediction
    model.eval()
    batch_size = 8  # 每次预测时将多少张图片打包成一个batch
    with torch.no_grad():
        for ids in range(0, len(img_path_list) // batch_size):
            img_list = []
            for img_path in img_path_list[ids * batch_size: (ids + 1) * batch_size]:
                img = Image.open(img_path)
                img = data_transform(img)
                img_list.append(img)

            # batch img
            # 将img_list列表中的所有图像打包成一个batch
            batch_img = torch.stack(img_list, dim=0)
            # predict class
            output = model(batch_img.to(device)).cpu()
            predict = torch.softmax(output, dim=1)
            probs, classes = torch.max(predict, dim=1)

            for idx, (pro, cla) in enumerate(zip(probs, classes)):
                print(f"image: {img_path_list[ids*batch_size+idx]}  class: {class_indict[str(cla.numpy())]}  prob: {pro.numpy():.3}")


if __name__ == '__main__':
    main()

运行之后,输出

image: ./data/imgs/455728598_c5f3e7fc71_m.jpg  class: dandelion  prob: 0.989
image: ./data/imgs/3464015936_6845f46f64.jpg  class: dandelion  prob: 0.999
image: ./data/imgs/3461986955_29a1abc621.jpg  class: dandelion  prob: 0.996
image: ./data/imgs/8223949_2928d3f6f6_n.jpg  class: dandelion  prob: 0.991
image: ./data/imgs/10919961_0af657c4e8.jpg  class: dandelion  prob: 1.0
image: ./data/imgs/10443973_aeb97513fc_m.jpg  class: dandelion  prob: 0.906
image: ./data/imgs/8475758_4c861ab268_m.jpg  class: dandelion  prob: 0.805
image: ./data/imgs/3857059749_fe8ca621a9.jpg  class: dandelion  prob: 1.0
image: ./data/imgs/2457473644_5242844e52_m.jpg  class: dandelion  prob: 1.0
image: ./data/imgs/146023167_f905574d97_m.jpg  class: dandelion  prob: 0.998
image: ./data/imgs/2502627784_4486978bcf.jpg  class: dandelion  prob: 0.488
image: ./data/imgs/2481428401_bed64dd043.jpg  class: dandelion  prob: 1.0
image: ./data/imgs/13920113_f03e867ea7_m.jpg  class: dandelion  prob: 1.0
image: ./data/imgs/2535769822_513be6bbe9.jpg  class: dandelion  prob: 0.997
image: ./data/imgs/3954167682_128398bf79_m.jpg  class: dandelion  prob: 1.0
image: ./data/imgs/2516714633_87f28f0314.jpg  class: dandelion  prob: 0.998
image: ./data/imgs/2634665077_597910235f_m.jpg  class: dandelion  prob: 0.996
image: ./data/imgs/3502447188_ab4a5055ac_m.jpg  class: dandelion  prob: 0.999
image: ./data/imgs/425800274_27dba84fac_n.jpg  class: dandelion  prob: 0.422
image: ./data/imgs/3365850019_8158a161a8_n.jpg  class: dandelion  prob: 1.0
image: ./data/imgs/674407101_57676c40fb.jpg  class: dandelion  prob: 1.0
image: ./data/imgs/2628514700_b6d5325797_n.jpg  class: dandelion  prob: 0.999
image: ./data/imgs/3688128868_031e7b53e1_n.jpg  class: dandelion  prob: 0.962
image: ./data/imgs/2502613166_2c231b47cb_n.jpg  class: dandelion  prob: 1.0

完成预期功能(这里我的样本都是dandelion,当然混合的也可以)

七.模型改进

当不加载预训练模型,而从头开始训练的话,当epoch为50时,经实际训练,准确率为80%多,但当加载预训练模型时,完成第一次迭代准确率就已达到了90%,这也正说明了迁移学习的好处。

同时,这里采用的是Resnet34,也可以尝试更深的50、101、152层网络。

还有其他方法会在之后进行补充。文章来源地址https://www.toymoban.com/news/detail-722055.html

到了这里,关于基于ResNet34的花朵分类的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • PyTorch示例——ResNet34模型和Fruits图像数据

    ResNet34模型,做图像分类 数据使用水果图片数据集,下载见Kaggle Fruits Dataset (Images) Kaggle的Notebook示例见 PyTorch——ResNet34模型和Fruits数据 下面见代码 查看图像 展示多张图片 苹果 樱桃 直接使用ImageFolder加载数据,按目录解析水果类别 输出如下 ResidualBlock ResNet34 准备代码 开始

    2024年02月12日
    浏览(48)
  • 使用Pytorch实现图像花朵分类

    代码的介绍在这个链接里面,这篇博客主要是为了带着大家通过实践的方式熟悉一下代码的使用,并且了解相关功能。 这里我提供了一个花朵数据集,里面总共有十个类别的花朵作为本次实验的数据集。 我们下载代码和数据集到本地,然后我们在下图创建一个名字为dataset的

    2023年04月08日
    浏览(42)
  • 深度学习图像分类实战——pytorch搭建卷积神经网络(AlexNet, LeNet, ResNet50)进行场景图像分类(详细)

    目录 1  一、实验过程 1.1  实验目的 1.2  实验简介 1.3  数据集的介绍 1.4  一、LeNet5网络模型 1.5  二、AlexNet网络模型 1.6  三、ResNet50(残差网络)网络模型  二、实验代码 导入实验所需要的库  参数配置 数据预处理 重新DataSet 加载数据转为DataLoader函数 可视化一批训练

    2024年02月05日
    浏览(66)
  • 【pytorch】ResNet18、ResNet20、ResNet34、ResNet50网络结构与实现

    选取经典的早期Pytorch官方实现代码进行分析 https://github.com/pytorch/vision/blob/9a481d0bec2700763a799ff148fe2e083b575441/torchvision/models/resnet.py 各种ResNet网络是由BasicBlock或者bottleneck构成的,它们是构成深度残差网络的基本模块 ResNet的大部分各种结构是1层conv+4个block+1层fc 需要注意的是最后

    2024年02月02日
    浏览(47)
  • 【pytorch】ResNet源码解读和基于迁移学习的实战

    “工欲善其事,必先利其器”,掌握ResNet网络有必要先了解其原理和源码。本文分别从原理、源码、运用三个方面出发行文,先对ResNet原理进行阐述,然后对pytorch中的源码进行详细解读,最后再基于迁移学习对模型进行调整、实战。本文若有疏漏、需更正、改进的地方,望读

    2024年02月13日
    浏览(44)
  • 【数据挖掘实战】——舆情分析:对微博文本进行情绪分类

    🤵‍♂️ 个人主页:@Lingxw_w的个人主页 ✍🏻作者简介:计算机科学与技术研究生在读 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+   目录 一、背景介绍 二、比赛任务

    2024年02月08日
    浏览(44)
  • 图像分类:Pytorch图像分类之--ResNet模型

    前言  ResNet 网络是在 2015年 由微软实验室提出,斩获当年ImageNet竞赛中分类任务第一名,目标检测第一名。获得COCO数据集中目标检测第一名,图像分割第一名。 原论文地址:Deep Residual Learning for Image Recognition(作者是CV大佬何凯明团队) ResNet创新点介绍 在ResNet网络中创新点

    2023年04月11日
    浏览(36)
  • 基于数据挖掘机器学习的心脏病患者分类建模与分析

    首先,读取数据集,该数据集是UCI上的心脏病患者数据集,其中包含了 303 条患者信息,每一名患者有 13 个字段记录其基本信息(年龄、性别等)和身体健康信息(心率、血糖等),此外有一个类变量记录其是否患有心脏病。详细的字段信息可见 此处。 类别字段 target 有两

    2024年01月19日
    浏览(57)
  • 混淆矩阵Confusion Matrix(resnet34 基于 CIFAR10)

    目录 1. Confusion Matrix 2. 其他的性能指标 3. example 4. 代码实现混淆矩阵 5.  测试,计算混淆矩阵 6. show 7. 代码 混淆矩阵可以将真实标签和预测标签的结果以矩阵的形式表示出来,相比于之前计算的正确率acc更加的直观。 如下,是花分类的混淆矩阵: 之前计算的acc = 预测正确的

    2024年02月01日
    浏览(45)
  • 【数据挖掘】基于粒子群算法优化支持向量机PSO-SVM对葡萄酒数据集进行分类

    PSO是粒子群优化算法(Particle Swarm Optimization)的英文缩写,是一种基于种群的随机优化技术,由Eberhart和Kennedy于1995年提出。粒子群算法是模仿昆虫、兽群、鸟群和鱼群等的群集行为,这些群体按照一种合作的方法寻找食物,群体中的每个成员通过学习它自身的经验和其他成员

    2024年02月02日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包