Ethereum Using Zero Knowledge Proofs for Anonymousity

这篇具有很好参考价值的文章主要介绍了Ethereum Using Zero Knowledge Proofs for Anonymousity。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

作者:禅与计算机程序设计艺术

1.简介

Ethereum是一个基于区块链的分布式计算平台,它支持开发者创建自己的去中心化应用程序(dApps)。同时,Ethereum还有一个功能叫做零知识证明(ZKP),这使得Ethereum可以用来实现匿名加密货币。所以,本文将通过具体操作一步步带领读者构建一个匿名加密货币系统——Ethereum。

2.基本概念术语说明

2.1 Ether(以太币)

Ether就是以太坊平台的原生数字货币。它的代号是ETH,是加密货币的一个缩写词。它的价值随着时间的推移在上涨。目前其价格约为$444美元/枚。

2.2 DAPP(去中心化应用)

DApp也称去中心化应用,是指利用分布式账本技术构建的应用。用户可以在不受信任的环境中进行资产交易、合约部署、存款等操作,并获得安全可靠的服务。一般情况下,DApp的运行需要付费,而这些费用往往要比传统应用程序的费用高出很多。因此,DApp更适合那些需要快速发展的行业或业务场景。

2.3 ZKP(零知识证明)

ZKP是一种密码学方法。它允许一个参与方(Prover)向另一个参与方(Verifier)提供一些信息,然后由Verifier对这个信息作检查。但凡涉及到隐藏信息的验证,都可以使用ZKP的方法。比如,你可以把私钥藏起来,但是给出公钥之后,任何人都可以验证你是否拥有这个私钥。而如果你已经用公钥隐藏了你的身文章来源地址https://www.toymoban.com/news/detail-722429.html

到了这里,关于Ethereum Using Zero Knowledge Proofs for Anonymousity的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文笔记--DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature

    标题:DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature 作者:Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D. Manning, Chelsea Finn 日期:2023 期刊:arxiv preprint   文章提出了一种检测语料是否为LLM生成的无监督方法“DetectGPT”,该方法属于一种基于LLM的log-proba进行

    2024年02月04日
    浏览(42)
  • KGAT: Knowledge Graph Attention Network for Recommendation

    [1905.07854] KGAT: Knowledge Graph Attention Network for Recommendation (arxiv.org) LunaBlack/KGAT-pytorch (github.com) 目录 1、背景 2、任务定义 3、模型 3.1 Embedding layer 3.2 Attentive Embedding Propagation Layers 3.3 Model Prediction 3.4 Optimization 4、部分代码解读 4.1 数据集 4.2 数据集的处理 4.3 模型 4.4 模型训练 C

    2024年02月16日
    浏览(41)
  • Transaction-based classification and detection approach for Ethereum smart contract

    摘要 :区块链技术为各行业带来创新。以太坊是目前第二大区块链平台,也是最大的智能合约区块链平台。智能合约可以简化和加速各种应用程序的开发,但也带来了一些问题。例如,智能合约被用来实施欺诈,漏洞合约被用来破坏公平性,还有许多重复的合约没有实际目的

    2024年02月06日
    浏览(38)
  • 【论文笔记】Knowledge Is Flat: A Seq2Seq Generative Framework for Various Knowledge Graph Completion

    arxiv时间: September 15, 2022 作者单位i: 南洋理工大学 来源: COLING 2022 模型名称: KG-S2S 论文链接: https://arxiv.org/abs/2209.07299 项目链接: https://github.com/chenchens190009/KG-S2S 以往的研究通常将 KGC 模型与特定的图结构紧密结合,这不可避免地会导致两个缺点 特定结构的 KGC 模型互不兼容 现

    2024年01月19日
    浏览(37)
  • Knowledge Graph Prompting for Multi-Document Question Answering

    本文是LLM系列文章,针对《Knowledge Graph Prompting for Multi-Document Question Answering》的翻译。 大型语言模型的“预训练、提示、预测”范式在开放领域问答(OD-QA)中取得了显著的成功。然而,很少有工作在多文档问答(MD-QA)的场景中探索这种范式,这项任务需要彻底理解不同文

    2024年02月09日
    浏览(41)
  • 【论文笔记】KDD2019 | KGAT: Knowledge Graph Attention Network for Recommendation

    为了更好的推荐,不仅要对user-item交互进行建模,还要将关系信息考虑进来 传统方法因子分解机将每个交互都当作一个独立的实例,但是忽略了item之间的关系(eg:一部电影的导演也是另一部电影的演员) 高阶关系:用一个/多个链接属性连接两个item KG+user-item graph+high orde

    2024年02月16日
    浏览(41)
  • KG-BERT: BERT for Knowledge Graph Completion 2019ACL

    把BERT用在知识图谱补全上 提出KG-BERT模型,在预训练好的BERT基础上继续fine-tuning。 传统的KGC方法一般依赖于KGE,而KGE往往通过将KG中的三元组关系投影到某个表示空间中,然后使用打分函数对三元组的合理性进行评估,在用基于正负样本的对比进行模型的训练,而这个表示空

    2024年02月07日
    浏览(49)
  • 论文笔记|CVPR2023:Supervised Masked Knowledge Distillation for Few-Shot Transformers

    这篇论文的题目是 用于小样本Transformers的监督遮掩知识蒸馏 论文接收: CVPR 2023 论文地址: https://arxiv.org/pdf/2303.15466.pdf 代码链接: https://github.com/HL-hanlin/SMKD 1.ViT在小样本学习(只有少量标记数据的小型数据集)中往往会 过拟合,并且由于缺乏 归纳偏置 而导致性能较差;

    2024年02月06日
    浏览(53)
  • 论文阅读《ICDE2023:Relational Message Passing for Fully Inductive Knowledge Graph Completion》

    论文链接 工作简介 在知识图谱补全 (KGC) 中,预测涉及新兴实体和 / 或关系的三元组, 这是在学习 KG 嵌入时看不到的,已成为一个关键挑战。 带有消息传递的子图推理是一个很有前途和流行的解决方案。 最近的一些方法已经取得了很好的性能,但它们 (1) 通常只能预测单独

    2024年02月07日
    浏览(41)
  • An Efficient Memory-Augmented Transformer for Knowledge-Intensive NLP Tasks

    本文是LLM系列文章,针对《An Efficient Memory-Augmented Transformer for Knowledge 获取外部知识对于许多自然语言处理任务至关重要,例如问答和对话。现有的方法通常依赖于将知识存储在其参数中的参数模型,或者使用可以访问外部知识源的检索增强模型。参数模型和检索增强模型在

    2024年02月09日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包