(完全解决)如何输入一个图的邻接矩阵(每两个点的亲密度矩阵affinity),然后使用sklearn进行谱聚类

这篇具有很好参考价值的文章主要介绍了(完全解决)如何输入一个图的邻接矩阵(每两个点的亲密度矩阵affinity),然后使用sklearn进行谱聚类。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

背景

网上倒是有一些关于使用sklearn进行谱聚类的教程,但是这些教程的输入都是一些点的集合,然后根据谱聚类的原理,其会每两个点计算一次亲密度(可以认为两个点距离越大,亲密度越小),假设一共有N个点,那么就是N*N个亲密度要计算,这特别像什么?图里面的邻接矩阵对不对。然后算法再根据这些亲密度进行聚类,即亲密度越大的点,他们应该聚在一起。

总结,这些教程都是输入点,没有说如何直接输入邻接矩阵,然后使用sklearn进行谱聚类

输入点

下面的X就是输入的点的坐标,形状为(100,2),我们是对这些点进行聚类,聚两类。然后affinity参数其实就是距离计算公式你选用哪个的意思,比如我们常常知道的欧式距离,曼哈顿距离,当然谱聚类里面不是这些。总之,实际使用中,哪个效果好用哪个,建议官方提供的距离你都可以试一试。

import numpy as np
from sklearn import datasets
from sklearn.cluster import SpectralClustering
import matplotlib.pyplot as plt

X, _ = datasets.make_circles(n_samples=100, factor=0.5, noise=0.05)
#X就是输入的点
fig = plt.figure(figsize=(16,4))

# 谱聚类默认聚类数为8
model = SpectralClustering(n_clusters=2).fit(X)
ax = fig.add_subplot(132)
ax.scatter(X[:,0], X[:,1], c=model.labels_, marker='.')


model = SpectralClustering(n_clusters=2, affinity="nearest_neighbors").fit(X)
ax = fig.add_subplot(133)
ax.scatter(X[:,0], X[:,1], c=model.labels_, marker='.')

plt.show()

(完全解决)如何输入一个图的邻接矩阵(每两个点的亲密度矩阵affinity),然后使用sklearn进行谱聚类,机器学习,图论,sklearn,聚类,人工智能,1024程序员节

直接输入邻接矩阵

邻接矩阵表示各个点之间的亲密度,我们先准备好邻接矩阵如下,形状是N*N,注意邻接矩阵需要为正数,否则报错,所以我们下面用了指数。

adjacency_matrix=[[ 0.0470,  0.0309,  0.0269,  0.0867,  0.0548,  0.0109,  0.0771,  0.0307,
          0.0276],
        [ 0.1033,  0.0157,  0.0012, -0.0097,  0.0050,  0.0059, -0.0179, -0.0133,
         -0.0074],
        [-0.0070,  0.0795,  0.0222, -0.0379, -0.0281, -0.0073, -0.0569, -0.0341,
         -0.0208],
        [ 0.0370,  0.0165, -0.0008,  0.0012, -0.0044, -0.0090,  0.0311,  0.0330,
          0.0124],
        [-0.0185, -0.0267, -0.0199,  0.1049,  0.0289, -0.0023, -0.0270, -0.0290,
         -0.0348],
        [-0.1064, -0.0719, -0.0368, -0.0589,  0.0236, -0.0024, -0.0903, -0.0769,
         -0.0512],
        [ 0.0624,  0.0479,  0.0304,  0.0762,  0.0512,  0.0178,  0.0633,  0.0288,
          0.0256],
        [-0.0258, -0.0148, -0.0024, -0.0092,  0.0007, -0.0081,  0.0819, -0.0039,
         -0.0092],
        [-0.0472, -0.0152, -0.0039, -0.0405, -0.0287, -0.0161, -0.0083,  0.0608,
         -0.0053]]
adjacency_matrix=np.exp(np.array(adjacency_matrix))
from sklearn.cluster import SpectralClustering
sc = SpectralClustering(3, affinity='precomputed', n_init=100,
                        assign_labels='discretize')#precomputed就是说我们算好了的意思。
sc.fit_predict(adjacency_matrix)  

输出结果

array([1, 2, 2, 1, 0, 0, 1, 1, 0], dtype=int64)

这个就是我们9个点的聚类结果。文章来源地址https://www.toymoban.com/news/detail-722482.html


完结撒花

到了这里,关于(完全解决)如何输入一个图的邻接矩阵(每两个点的亲密度矩阵affinity),然后使用sklearn进行谱聚类的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构】邻接矩阵和邻接图的遍历

    本篇文章开始学习数据结构的图的相关知识,涉及的基本概念还是很多的。 本文的行文思路: 学习图的基本概念 学习图的存储结构——本文主要介绍邻接矩阵和邻接表 对每种结构进行深度优先遍历和广度优先遍历 话不多说,狠活献上 等等,先别急,正式学习之前先认识几个

    2024年02月04日
    浏览(49)
  • Python实现构建gan模型, 输入一个矩阵和两个参数值,输出一个矩阵

    构建一个GAN模型,使用Python实现,该模型将接受一个矩阵和两个参数值作为输入,并输出另一个矩阵。GAN(生成对抗网络)是一种深度学习模型,由生成器和判别器两部分组成,可以用于生成具有一定规律性的数据,如图像或音频。

    2024年02月13日
    浏览(34)
  • 图的存储 —— 邻接矩阵

    图的结构比较复杂,任何两个节点之间都可能有关系。 图的存储分为顺序存储和链式存储。 顺序存储包括邻接矩阵和边集数组, 链式存储包括邻接表、链式前向星、十字链表和邻接多重表。 图的存储 —— 邻接矩阵 邻接矩阵通常采用一个一维数组存储图中节点的信息,采用

    2024年02月06日
    浏览(38)
  • 无向图的邻接矩阵

    无向图的邻接矩阵的定义、表示法、度 定义 逻辑结构分为两部分:V和E集合,其中,V是顶点,E是边。因此,用一个一维数组存放图中所有顶点数据;用一个二维数组存放顶点间关系(边或弧)的数据,这个二维数组称为邻接矩阵。邻接矩阵又分为有向图邻接矩阵和无向图邻

    2024年02月04日
    浏览(35)
  • 图论01-【无权无向】-图的基本表示-邻接矩阵/邻接表

    https://github.com/Chufeng-Jiang/Graph-Theory/tree/main/src/Chapt01_Adjacency 代码有删减 代码有删减 只需要改动一行 adj = new TreeSet[V]; //构造邻接表, V行,V个LinkedList 代码有删减

    2024年02月07日
    浏览(40)
  • 图的基本操作(邻接矩阵)

    图是比较常用的一种数据结构,我针对期末考试对其进行了大概整理,形成了本文。 整体上是基于文件进行图的建立,有两种文件内容格式,READMODE ==1时,是读入顶点个数,顶点信息以及邻接矩阵,READMODE ==2时,是读入顶点个数,顶点信息,边的个数,边的信息,样例如下:

    2024年02月04日
    浏览(44)
  • 【图】(一)图的建立 - 邻接矩阵与邻接表 - C语言

     图相关文章: 1. 图的建立 - 邻接矩阵与邻接表 https://blog.csdn.net/m15253053181/article/details/127552328?spm=1001.2014.3001.5501 2. 图的遍历 - DFS与BFS https://blog.csdn.net/m15253053181/article/details/127558368?spm=1001.2014.3001.5501 3. 顶点度的计算 https://blog.csdn.net/m15253053181/article/details/127558599?spm=1001.2014.3

    2024年02月06日
    浏览(44)
  • 图的邻接矩阵存储及遍历操作

    任务描述 本关任务:要求从文件输入顶点和边数据,包括顶点信息、边、权值等,编写程序实现以下功能。 1)构造无向网G的邻接矩阵和顶点集,即图的存储结构为邻接矩阵。 2)输出无向网G的各顶点和邻接矩阵。 3)输出无向网G中顶点H的所有邻接顶点。 测试说明 平台会对

    2024年02月06日
    浏览(40)
  • 图的存储--邻接矩阵/边集数组/邻接表/链式邻接表/链式前向星

    使用二维数组w[u][v]存储点u到点v的边的权值。 一般应用在点数不多的稠密图 时间复杂度:O(n 2 ) 空间复杂度:O(n 2 ) 边集数组e[i]存储第i条边的「起点、终点、边权」。在kruskal算法中,将边按边权排序,直接存边。 时间复杂度:O(nm) 空间复杂度:O(m) 出边数组e[u][i]存储u的所

    2024年02月02日
    浏览(36)
  • 图详解第一篇:图的基本概念及其存储结构(邻接矩阵和邻接表)

    这篇文章开始,我们来学习一种高阶数据结构——图 图是由顶点集合及顶点间的关系(边)组成的一种数据结构:G = (V, E)。 其中: 顶点集合V = {x|x属于某个数据对象集}是有穷非空集合; E = {(x,y)|x,y属于V}或者E = {x, y|x,y属于V Path(x, y)}是顶点间关系的有穷集合,也叫做边的集

    2024年02月08日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包