定理 1 设 λ 1 , λ 2 , ⋯ , λ m \lambda_1,\lambda_2,\cdots,\lambda_m λ1,λ2,⋯,λm 是方阵 A \boldsymbol{A} A 的 m m m 个特征值, p 1 , p 2 , ⋯ , p m \boldsymbol{p}_1,\boldsymbol{p}_2,\cdots,\boldsymbol{p}_m p1,p2,⋯,pm 依次是与之对应的特征向量,如果 λ 1 , λ 2 , ⋯ , λ m \lambda_1,\lambda_2,\cdots,\lambda_m λ1,λ2,⋯,λm 各不相等,则 p 1 , p 2 , ⋯ , p m \boldsymbol{p}_1,\boldsymbol{p}_2,\cdots,\boldsymbol{p}_m p1,p2,⋯,pm 线性无关。
证明 使用数据归纳法。
当 m = 1 m=1 m=1 时,因特征向量 p 1 ≠ 0 \boldsymbol{p}_1 \ne 0 p1=0,故只含一个向量的向量组 p 1 \boldsymbol{p}_1 p1 线性无关。文章来源:https://www.toymoban.com/news/detail-722637.html
假设当 m = k − 1 m = k - 1 m=k−1 时结论成立,要证当 m = k m=k m=k 时结论也成立。即假设向量组 p 1 , p 2 , ⋯ , p k − 1 \boldsymbol{p}_1,\boldsymbol{p}_2,\cdots,\boldsymbol{p}_{k-1} p1,p2,⋯,pk−1 线性无关,要证向量组 p 1 , p 2 , ⋯ , p k \boldsymbol{p}_1,\boldsymbol{p}_2,\cdots,\boldsymbol{p}_k p1,p2,⋯,pk 线性无关。为此,设有
x 1 p 1 + x 2 p 2 + ⋯ + x k − 1 p k − 1 + x k p k = 0 (1) x_1 \boldsymbol{p}_1 + x_2 \boldsymbol{p}_2 + \cdots + x_{k-1} \boldsymbol{p}_{k-1} + x_k \boldsymbol{p}_k = \boldsymbol{0} \tag{1} x1p1+x2p2+⋯+xk−1pk−1+xkpk=0(1)
用 A \boldsymbol{A} A 左乘上式,得
x 1 A p 1 + x 2 A p 2 + ⋯ + x k − 1 A p k − 1 + x k A p k = 0 (2) x_1 \boldsymbol{A} \boldsymbol{p}_1 + x_2 \boldsymbol{A} \boldsymbol{p}_2 + \cdots + x_{k-1} \boldsymbol{A} \boldsymbol{p}_{k-1} + x_k \boldsymbol{A} \boldsymbol{p}_k = \boldsymbol{0} \tag{2} x1Ap1+x2Ap2+⋯+xk−1Apk−1+xkApk=0(2)
即
x 1 λ 1 p 1 + x 2 λ 2 p 2 + ⋯ + x k − 1 λ k − 1 p k − 1 + x k λ k p k = 0 (3) x_1 \lambda_1 \boldsymbol{p}_1 + x_2 \lambda_2 \boldsymbol{p}_2 + \cdots + x_{k-1} \lambda_{k-1} \boldsymbol{p}_{k-1} + x_k \lambda_k \boldsymbol{p}_k = \boldsymbol{0} \tag{3} x1λ1p1+x2λ2p2+⋯+xk−1λk−1pk−1+xkλkpk=0(3)
将 ( 3 ) (3) (3) 式减去 ( 1 ) (1) (1) 式的 λ k \lambda_k λk 倍,得
x 1 ( λ 1 − λ k ) p 1 + x 2 ( λ 2 − λ k ) p 2 + ⋯ + x k − 1 ( λ k − 1 − λ k ) p k − 1 = 0 (4) x_1 (\lambda_1 - \lambda_k) \boldsymbol{p}_1 + x_2 (\lambda_2 - \lambda_k) \boldsymbol{p}_2 + \cdots + x_{k-1} (\lambda_{k-1} - \lambda_k) \boldsymbol{p}_{k-1} = \boldsymbol{0} \tag{4} x1(λ1−λk)p1+x2(λ2−λk)p2+⋯+xk−1(λk−1−λk)pk−1=0(4)
因为根据假设有向量组 p 1 , p 2 , ⋯ , p k − 1 \boldsymbol{p}_1,\boldsymbol{p}_2,\cdots,\boldsymbol{p}_{k-1} p1,p2,⋯,pk−1 线性无关,所以有
x i ( λ i − λ k ) = 0 ( i = 1 , 2 , ⋯ , k − 1 ) x_i (\lambda_i - \lambda_k) = 0 \hspace{1em} (i = 1,2,\cdots,k-1) xi(λi−λk)=0(i=1,2,⋯,k−1)
因为 λ 1 , λ 2 , ⋯ , λ m \lambda_1,\lambda_2,\cdots,\lambda_m λ1,λ2,⋯,λm 各不相等,即 λ i − λ k ≠ 0 ( i = 1 , 2 , ⋯ , k − 1 ) \lambda_i - \lambda_k \ne 0 \ (i=1,2,\cdots,k-1) λi−λk=0 (i=1,2,⋯,k−1),所以得
x i = 0 ( i = 1 , 2 , ⋯ , k − 1 ) (5) x_i = 0 \hspace{1em} (i=1,2,\cdots,k-1) \tag{5} xi=0(i=1,2,⋯,k−1)(5)
将 ( 5 ) (5) (5) 式代入式 ( 1 ) (1) (1),得
x k p k = 0 x_k \boldsymbol{p}_k = \boldsymbol{0} xkpk=0
因为 p k \boldsymbol{p}_k pk 为特征向量,即 p k ≠ 0 \boldsymbol{p}_k \ne \boldsymbol{0} pk=0,所以 x k = 0 x_k = 0 xk=0。因此有 p 1 , p 2 , ⋯ , p m \boldsymbol{p}_1,\boldsymbol{p}_2,\cdots,\boldsymbol{p}_m p1,p2,⋯,pm 线性无关。得证。文章来源地址https://www.toymoban.com/news/detail-722637.html
到了这里,关于线性代数|证明:矩阵不同特征值对应的特征向量线性无关的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!