PCA数学原理和非负矩阵分解

这篇具有很好参考价值的文章主要介绍了PCA数学原理和非负矩阵分解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

于剑老师的教课书太难懂,"PCA主成因分析"这段实在看不懂,还是参考其他老师的文章才基本看懂。

我是搬运工:

https://mp.weixin.qq.com/s/Hp1Y1RFH4sxcZjhHuq899A

还要啰嗦一下的是,PCA的理论基础:

  1. 根据定义,若x,y独立,则E(xy) = ExEy。若可以将协方差矩阵转换为对角矩阵,那么可以保证所有方向的向量都是正交独立的。
  2. 主对角线元素最大化,可以保证向量之间的区分度最大化。

非负矩阵分解推导:

https://zhuanlan.zhihu.com/p/340774022文章来源地址https://www.toymoban.com/news/detail-722731.html

到了这里,关于PCA数学原理和非负矩阵分解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数学与算法】奇异矩阵、奇异值、奇异值分解、奇异性

    我们经常会碰到几个名词很相近的一些数学术语,例如 奇异矩阵、奇异值、奇异值分解、奇异性 ,经常会混淆,这里把它们的定义放在一起,做一下总结: 1.奇异矩阵: 奇异矩阵 是线性代数的概念,就是该矩阵的 秩不是满秩 。 首先,看这个矩阵是不是方阵,即行数和列数

    2024年02月06日
    浏览(43)
  • 【高等工程数学】南理工研究生课程 突击笔记5 矩阵分解与广义逆矩阵

    第三章主要内容如下 提示:以下是本篇文章正文内容,下面案例可供参考 矩阵分解是将矩阵分解成两个或三个在形式上、性质上比较简单的矩阵的乘积。 操作方式见例题3.1 将A的第一行元素照抄 再算 第一列的元素Ln1 求第二阶的行元素 求第二阶的列元素 求三阶对角线元素

    2024年02月02日
    浏览(49)
  • 2023 研究生数学建模竞赛(B题)DFT类矩阵的整数分解逼近|建模秘籍&文章代码思路大全

    问题1:降低硬件复杂度 在约束1下,优化DFT矩阵的分解,以最小化误差(RMSE)并减少乘法器的数量。 问题2:限制元素实部和虚部取值范围 在约束2下,优化DFT矩阵的分解,以最小化误差并考虑元素实部和虚部的取值范围。 问题3:同时限制稀疏性和取值范围 在同时满足约束

    2024年02月08日
    浏览(114)
  • 【Java数据结构】二叉树的前中后序遍历(递归和非递归)

    二叉树遍历是二叉树的一种重要操作 必须要掌握 二叉树的遍历可以用递归和非递归两种做法来实现 前序遍历的遍历方式是 先根节点 在左节点 在右节点 述这棵树前序遍历的结果是: A B D E C F G 递归的思想就是把问题拆分成一个个小问题来解决 treeNode是一个内部类 具体实现

    2023年04月26日
    浏览(51)
  • 【机器学习】 奇异值分解 (SVD) 和主成分分析 (PCA)

            在机器学习 (ML) 中,一些最重要的线性代数概念是奇异值分解 (SVD) 和主成分分析 (PCA)。收集到所有原始数据后,我们如何发现结构?例如,通过过去 6 天的利率,我们能否了解其构成以发现趋势?         对于高维原始数据,这变得更加困难。这就像

    2024年02月15日
    浏览(54)
  • 【数据处理方法】主成分分析(PCA)原理分析

            笔者最近在学习的过程需要使用一些数据分析和处理的方法,而PCA就是其中常用的一种手段。但在自学的过程中,由于笔者水平有限,对一些博客中的公式不是能很好理解(数学不好的辛酸Ծ‸Ծ),导致总是对整个方法的原理没有一个透彻的理解。后来在视频用

    2023年04月09日
    浏览(39)
  • 机器学习中高维组合特征的处理方法+推荐系统使用矩阵分解为用户推荐的原理解析,《百面机器学习》学习笔记

    为了提高复杂关系的拟合能力,在特征工程中经常会把一阶离散特征进行组合,构成高阶组合特征。 假设有A B两组特征,C为受到A B两种特征影响的因素,且对特征A来说,其有 A i , i ∈ [ 0 , 1 ] {A^i,iin [0,1]} A i , i ∈ [ 0 , 1 ] 两种特征取值。同时,对于特征B来说,其有 B j , j ∈

    2024年02月05日
    浏览(46)
  • 《横向联邦学习中 PCA差分隐私数据发布算法》论文算法原理笔记

    论文地址:https://www.arocmag.com/article/01-2022-01-041.html 论文摘要      为了让不同组织在保护本地敏感数据和降维后发布数据隐私的前提下,联合使用 PCA进行降维和数据发布,提出 横向联邦 PCA差分隐私数据发布算法 。引入随机种子联合协商方案,在各站点之间以较少通信代

    2024年02月08日
    浏览(38)
  • 大数据课程K18——Spark的ALS算法与显式矩阵分解

    文章作者邮箱:yugongshiye@sina.cn              地址:广东惠州 ⚪ 掌握Spark的ALS算法与显式矩阵分解; ⚪ 掌握Spark的ALS算法原理; 我们在实现推荐系统时,当要处理的那些数据是由用户所提供的自身的偏好数据,这些数据被称作显式偏好数据,由显示偏好数据建立的矩阵称

    2024年02月09日
    浏览(32)
  • AI人工智能中的数学基础原理与Python实战: 矩阵本质及其运算

    人工智能(AI)和机器学习(ML)已经成为当今最热门的技术领域之一,它们在各个行业的应用也越来越广泛。然而,在深入了解这些领域之前,我们需要了解一些基本的数学原理和算法。这篇文章将涵盖矩阵的本质以及如何在Python中进行矩阵运算。 矩阵是计算机科学和数学中的一

    2024年04月09日
    浏览(66)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包