机器学习笔记 - 3D 对象跟踪极简概述

这篇具有很好参考价值的文章主要介绍了机器学习笔记 - 3D 对象跟踪极简概述。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、简述

        大多数对象跟踪应用程序都是 2D 的。但现实世界是 3D 的,无论您是跟踪汽车、人、直升机、导弹,还是进行增强现实,您都需要使用 3D。在 CVPR 2022(计算机视觉和模式识别)会议上,已经出现了大量3D目标检测论文。

二、什么是 3D 对象跟踪?

        对象跟踪是指随着时间的推移定位并跟踪对象在空间中的位置和方向。它涉及检测图像序列(或点云)中的对象,然后预测其在后续帧中的位置。目标是持续估计对象的位置和方向,即使存在遮挡、相机运动和照明条件变化的情况。

机器学习笔记 - 3D 对象跟踪极简概述,深度学习从入门到精通,3D对象跟踪,深度学习,自动驾驶,机器学习

        我们大多数人都习惯于 2D 对象检测,这是从图像中预测感兴趣对象(例如汽车、行人、自行车等)周围的边界框坐标的任务。尽管文章来源地址https://www.toymoban.com/news/detail-722890.html

到了这里,关于机器学习笔记 - 3D 对象跟踪极简概述的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 多目标跟踪算法 实时检测 - opencv 深度学习 机器视觉 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习多目标跟踪 实时检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/dancheng-sen

    2024年02月05日
    浏览(70)
  • 计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)

    第1章:视觉项目资料介绍与学习指南 相关知识: 介绍计算机视觉、OpenCV库,以及课程的整体结构。 学习概要: 了解课程的目标和学习路径,为后续章节做好准备。 重要性: 提供学生对整个课程的整体认识,为学习提供框架和背景。 包括了 计算机视觉/opencv视频 视频对应

    2024年02月05日
    浏览(59)
  • 互联网加竞赛 多目标跟踪算法 实时检测 - opencv 深度学习 机器视觉

    🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习多目标跟踪 实时检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/dancheng-sen

    2024年02月19日
    浏览(51)
  • 机器学习笔记之优化算法(一)无约束优化概述

    从本节开始,将介绍 优化算法 ( Optimization Algorithm ) (text{Optimization Algorithm}) ( Optimization Algorithm ) 。 基于支持向量机 ( Support Vector Machine,SVM ) (text{Support Vector Machine,SVM}) ( Support Vector Machine,SVM ) 最大间隔分类器 的朴素思想: 从能够将所有样本点 正确分类 的直线中找到 满足

    2024年02月15日
    浏览(45)
  • 目标检测(Object Detection)学习笔记(概述与传统算法与基于深度学习算法)

    本文为课程研讨需要,对目标检测算法进行理论学习,无实战内容,欢迎交流探讨 目标检测(Object Detection) 的任务是找出图像中所有感兴趣的目标(物体),不同于分类和回归问题,目标检测还需要确定目标在图像中的位置 (定位) ,而确定识别目标的类别和位置 (分类

    2024年02月02日
    浏览(41)
  • 机器学习 & 深度学习编程笔记

    如果不加噪音就成了正常的线性函数了,所以要加噪音。 torch.normal(0, 0.01, y.shape)是一个用于生成服从正态分布的张量的函数。其中,0代表均值,0.01代表标准差,y.shape表示生成的张量的形状与y相同。具体而言,该函数会生成一个张量,其元素值是从均值为0、标准差为0.01的正

    2024年02月16日
    浏览(102)
  • 【唐宇迪 深度学习-3D点云实战系列】学习笔记

     课程目录如下: https://download.csdn.net/learn/35500/529919 3D点云领域都关注了哪些方向? 课程核心系列-PointNet系列 :点云数据如何处理、点云数据如何进行特征提取。 后续无论是分类、分割、补全、配准检测, 首先都要先对点云数据进行特征提取。 PointNet系列就是重点系列。

    2023年04月25日
    浏览(40)
  • 机器学习笔记之最优化理论与方法(一)最优化问题概述

    从本节开始,将对 最优化理论与方法 进行简单认识。 无论是 最优化理论 还是 最优化方法 ,讨论的 对象 都是 最优化问题 。 关于 最优化问题 的一种简单描述:最优化问题本质上属于 决策问题 。 例如 路径选择 问题:确定达到目的地最佳路径的计量标准 。其中问题的 目

    2024年02月11日
    浏览(47)
  • 李宏毅《机器学习 深度学习》简要笔记(一)

    一、线性回归中的模型选择 上图所示: 五个模型,一个比一个复杂,其中所包含的function就越多,这样就有更大几率找到一个合适的参数集来更好的拟合训练集。所以,随着模型的复杂度提高,train error呈下降趋势。 上图所示: 右上角的表格中分别体现了在train和test中的损

    2024年01月25日
    浏览(43)
  • 机器学习笔记 - 从2D数据合成3D数据

            人们一致认为,从单一角度合成 3D 数据是人类视觉的一项基本功能,这对计算机视觉算法来说极具挑战性。但随着 LiDAR、RGB-D 相机(RealSense、Kinect)和 3D 扫描仪等 3D 传感器的可用性和价格的提高,3D 采集技术的最新进展取得了巨大飞跃。         与广泛使用

    2024年02月01日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包