【算法分析与设计】算法概述

这篇具有很好参考价值的文章主要介绍了【算法分析与设计】算法概述。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


数据结构+算法(+设计模式)=程序

一、学习要点

  理解算法的概念。
  掌握算法的计算复杂性概念。
  掌握算法复杂性的渐近性态的数学表述。
  了解NP类问题的基本概念。


二、算法的定义

  顾名思义,计算(求解)的方法
  算法(Algorithm):对特定问题求解步骤的一种描述,是指令的有限序列
  算法是指解决问题的一种方法或一个过程
  程序设计=数据结构+算法(+设计模式)


三、算法的性质

  算法是若干指令的有穷序列,满足性质:
  (1)输入:有外部提供的量作为算法的输入。
  (2)输出:算法产生至少一个量作为输出。
  (3)确定性:组成算法的每条指令是清晰,无歧义的。
  (4)有限性:算法中每条指令的执行次数是有限的,执行每条指令的时间也是有限的。


四、程序(Program)

  程序是算法用某种程序设计语言的具体实现。
  程序可以不满足算法的性质。
  例如操作系统,是一个在无限循环中执行的程序,因而不是一个算法
  操作系统的各种任务可看成是单独的问题每一个问题由操作系统中的一个子程序通过特定的算法来实现。该子程序得到输出结果后便终止。


五、问题求解(Problem Solving)

【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构


六、算法的描述

  自然语言或表格
  伪码方式
  C++语言
  Java语言
  C语言
  Python等其他语言


七、算法分析的目的

  对算法所需要的两种计算机资源——时间和空间进行估算
  设计算法——设计出复杂性尽可能低的算法
  选择算法——在多种算法中选择其中复杂性最低者


八、算法复杂性分析

  算法复杂性是算法运行所需要的计算机资源的量,
  需要时间资源的量称为时间复杂性,需要的空间资源的量称为空间复杂性
  这个量应该只依赖于算法要解的问题的规模算法的输入算法本身的函数
  如果分别用NIA表示算法要解问题的规模算法的输入算法本身,而且用C表示复杂性,那么,应该有C=F(N,I,A)
  一般把时间复杂性和空间复杂性分开,并分别用T和S来表示,则有: T=T(N,I)和S=S(N,I)(通常,让A隐含在复杂性函数名当中)

(一)算法时间复杂性分析

  最坏情况下的时间复杂性
【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构
  最好情况下的时间复杂性
【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构
  平均情况下的时间复杂性
【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构
  其中DN是规模为N的合法输入的集合;I* 是DN中使T(N, I*)达到Tmax(N)的合法输入; 是中使T(N, I*)达到Tmin(N)的合法输入;而P(I)是在算法的应用中出现输入I的概率。

(二)算法渐近复杂性

  T(n) →∞ , 当 n→∞ ;
  (T(n) - t(n) )/ T(n) →0 ,当 n→∞;
  t(n)是T(n)的渐近性态,为算法的渐近复杂性。
  在数学上, t(n)是T(n)的渐近表达式,是T(n)略去低阶项留下的主项。它比T(n) 简单。

1、渐进上界记号-大O符号

  若存在两个正的常数c和n0,对于任意n≥n0,都有T(n)≤c×f(n),则称T(n)=O(f(n))
【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构

2、渐进下界记号-大Ω符号

  若存在两个正的常数c和n0,对于任意n≥n0,都有T(n)≥c×g(n),则称T(n)=Ω(g(n))
【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构

3、紧渐进界记号-Θ符号

  若存在三个正的常数c1、c2和n0,对于任意n≥n0都有c1×f(n)≥T(n)≥c2×f(n),则称T(n)=Θ(f(n))
【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构
  例: T(n)=5n2+8n+1
  当n≥1时,5n2+8n+1≤5n2+8n+n=5n2+9n≤5n2+9n2≤14n2=O(n2)
  当n≥1时,5n2+8n+1≥5n2=Ω(n2)
  ∴ 当n≥1时,14n2≥5n2+8n+1≥5n2
  则:5n2+8n+1=Θ(n2)
  定理:若T(n)=amnm +am-1nm-1 + … +a1n+a0(am>0),则有T(n)=O(nm)且T(n)=Ω(n m),因此,有T(n)=Θ(n m)。

4、非紧上界记号o

  o(g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0<f(n)<cg(n) }
  等价于 f(n) / g(n) →0 ,当 n→∞。

5、非紧下界记号ω

  ω(g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n0 >0使得对所有n> n0有:0 ≤ cg(n) < f(n) }
  等价于 f(n) / g(n) →∞ ,当 n→∞。

6、渐近分析记号在等式和不等式中的意义

  f(n)= Θ(g(n))的确切意义是:f(n) ∈ Θ(g(n))。
  一般情况下,等式和不等式中的渐近记号Θ(g(n))表示Θ(g(n))中的某个函数。
  例如:2n2 + 3n + 1 = 2n2 + Θ(n) 表示
   2n2 +3n +1=2n2 + f(n),其中f(n) 是Θ(n)中某个函数。
  等式和不等式中渐近记号O,o, Ω和ω的意义是类似的。

7、渐近分析中函数比较

  f(n)= O(g(n)) ≈ a ≤ b;
  f(n)= Ω(g(n)) ≈ a ≥ b;
  f(n)= Θ(g(n)) ≈ a = b;
  f(n)= o(g(n)) ≈ a < b;
  f(n)= ω(g(n)) ≈ a > b.

8、渐近分析记号的若干性质

(1)传递性

  f(n)= Θ(g(n)), g(n)= Θ(h(n)) → f(n)= Θ(h(n));
  f(n)= O(g(n)), g(n)= O (h(n)) → f(n)= O (h(n));
  f(n)= Ω(g(n)), g(n)= Ω (h(n)) → f(n)= Ω(h(n));
  f(n)= o(g(n)), g(n)= o(h(n)) → f(n)= o(h(n));
  f(n)= ω(g(n)), g(n)= ω(h(n)) → f(n)= ω(h(n));

(2)反身性

  f(n)= Θ(f(n));
  f(n)= O(f(n));
  f(n)= ω(f(n)).

(3)对称性

  f(n)= Θ(g(n)) ⇔ g(n)= Θ (f(n)) .

(4)互对称性

  f(n)= O(g(n)) ⇔ g(n)= Ω (f(n)) ;
  f(n)= o(g(n)) ⇔ g(n)= ω (f(n)) ;

(5)算术运算

  O(f(n))+O(g(n)) = O(max{f(n),g(n)}) ;
  O(f(n))+O(g(n)) = O(f(n)+g(n)) ;
  O(f(n))*O(g(n)) = O(f(n)*g(n)) ;
  O(cf(n)) = O(f(n)) ;
  g(n)= O(f(n)) → O(f(n))+O(g(n)) = O(f(n)) 。

  规则O(f(n))+O(g(n)) = O(max{f(n),g(n)}) 的证明
  对于任意f1(n) ∈ O(f(n)) ,存在正常数c1和自然数n1,使得对所有n≥ n1,有f1(n) ≤ c1f(n) 。
  类似地,对于任意g1(n) ∈ O(g(n)) ,存在正常数c2和自然数n2,使得对所有n≥ n2,有g1(n) ≤ c2g(n) 。
  令c3=max{c1, c2}, n3 =max{n1, n2},h(n)= max{f(n),g(n)} 。
  则对所有的 n ≥ n3,有
  f1(n) +g1(n) ≤ c1f(n) + c2g(n)
  ≤ c3f(n) + c3g(n)= c3(f(n) + g(n))
  ≤ c32 max{f(n),g(n)}
  = 2c3h(n) = O(max{f(n),g(n)}) .

9、算法渐近复杂性分析中常用函数

(1)单调函数

  单调递增:m ≤ n → f(m) ≤ f(n) ;
  单调递减:m ≥ n → f(m) ≥ f(n);
  严格单调递增:m < n → f(m) < f(n);
  严格单调递减:m > n → f(m) > f(n).

(2)取整函数

  ⌊ x ⌋ :不大于x的最大整数
  ⌈ x ⌉ :不小于x的最小整数

取整函数的若干性质

   x-1 < ⌊ x ⌋ ≤ x ≤ ⌈ x ⌉ < x+1;
   ⌊ n/2 ⌋ + ⌈ n/2 ⌉ = 整数n;
   对于n ≥ 0,a,b>0,有:
   ⌈ ⌈ n/a ⌉ /b ⌉ = ⌈ n/ab ⌉ ;
   ⌊ ⌊ n/a ⌋ /b ⌋ = ⌊ n/ab ⌋ ;
   ⌈ a/b ⌉ ≤ (a+(b-1))/b;
   ⌊ a/b ⌋ ≥ (a-(b-1))/b;
   f(x)= ⌊ x ⌋ , g(x)= ⌈ x ⌉ 为单调递增函数。

(3)多项式函数

   p(n)= a0+a1n+a2n2+…+adnd; ad>0;
   p(n) = Θ(nd);
   f(n) = O(nk) ⇔ f(n)多项式有界;
   f(n) = O(1) ⇔ f(n) ≤ c;
   k ≥ d → p(n) = O(nk) ;
   k ≤ d → p(n) = Ω(nk) ;
   k > d → p(n) = o(nk) ;
   k < d → p(n) = ω(nk) .

(4)指数函数

  对于正整数m,n和实数a>0:
  a0=1;
  a1=a ;
  a-1=1/a ;
  (am)n = amn ;
  (am)n = (an)m ;
  aman = am+n ;
  a>1 → an为单调递增函数;
  a>1 →
【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构
→ nb = o(an)

(5)对数函数

   log n = log2n;
   lg n = log10n;
   ln n = logen;
   logkn = (log n)k;
   log log n = log(log n);
   for a>0,b>0,c>0
【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构

(6)阶乘函数

【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构
【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构
  Stirling’s approximation
【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构
【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构
【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构

【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构

10、算法分析中常见的复杂性函数

【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构

(1)小规模数据

【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构

(2)中等规模数据

【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构

(3)算法分析方法

例:顺序搜索算法

template<class Type>
int seqSearch(Type *a, int n, Type k)
{
     for(int i=0;i<n;i++)
	  if (a[i]==k) return i;
     return -1;
}

  (1)Tmax(n) = max{ T(I) | size(I)=n }=O(n)
  (2)Tmin(n) = min { T(I) | size(I)=n }=O(1)
  (3)在平均情况下,假设:
   (a) 搜索成功的概率为p ( 0 ≤ p ≤ 1 );
   (b) 在数组的每个位置i ( 0 ≤ i < n )搜索成功的概率相同,均为 p/n。
【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构
【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构
【算法分析与设计】算法概述,数据结构与算法,算法,c++,数据结构


九、算法分析的基本法则

1、非递归算法:

(1)for / while 循环

  循环体内计算时间*循环次数

(2)嵌套循环

  循环体内计算时间*所有循环次数

(3)顺序语句

  各语句计算时间相加

(4)if-else语句

  if语句计算时间和else语句计算时间的较大者

2、最优算法

  问题的计算时间下界为Ω(f(n)),则计算时间复杂性为O(f(n))的算法是最优算法。
例如,排序问题的计算时间下界为Ω(nlogn),计算时间复杂性为O(nlogn)的排序算法是最优算法。
堆排序算法是最优算法。文章来源地址https://www.toymoban.com/news/detail-723022.html

到了这里,关于【算法分析与设计】算法概述的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构与算法:概述

    目录 算法 评价标准 时间的复杂度 概念 推导原则 举例 空间的复杂度 定义 情形 运用场景 数据结构 组成方式 在数学领域,算法是解决某一类问题的公式和思想; 计算机科学领域,是指一系列程序指令,用于解决特定的运算和逻辑问题; 衡量算法好坏的重要标准是:时间复

    2024年02月09日
    浏览(43)
  • 1. 数据结构与算法概述

    1.1 什么是数据结构? 官方解释: 数据结构是一门研究非数值计算的程序设计问题中的操作对象,以及他们之间的关系和操作等相关问题的学科。 大白话: 数据结构就是把数据元素按照一定的关系组织起来的集合,用来组织和存储数据 1.2 数据结构分类 传统上,我们可以把

    2023年04月26日
    浏览(44)
  • 第 2 章 数据结构和算法概述

    数据 data 结构(structure)是一门研究组织数据方式的学科,有了编程语言也就有了数据结构.学好数据结构可以编写出更加漂亮,更加有效率的代码。 要学习好数据结构就要多多考虑如何将生活中遇到的问题,用程序去实现解决. 程序 = 数据结构 + 算法 数据结构是算法的基础, 换言

    2024年01月19日
    浏览(42)
  • 【数据结构与算法】图的概述(内含源码)

    个人主页:【😊个人主页】 系列专栏:【❤️数据结构与算法】 学习名言:天子重英豪,文章教儿曹。万般皆下品,惟有读书高——《神童诗劝学》 第一章 ❤️ 学前知识 第二章 ❤️ 单向链表 第三章 ❤️ 递归 … 与线性表中的元素是“一对一”的关系和树中的元素是“

    2024年02月04日
    浏览(62)
  • 数据结构和算法——快速排序(算法概述、选主元、子集划分、小规模数据的处理、算法实现)

    目录 算法概述 图示 伪代码 选主元 子集划分 小规模数据的处理 算法实现 快速排序和归并排序有一些相似,都是用到了分而治之的思想:   通过初步的认识,我们能够知道快速排序算法最好的情况应该是: 每次都正好中分 ,即每次选主元都为元素的中位数的位置。 最好情

    2024年02月15日
    浏览(40)
  • 数据结构与算法基础(王卓)(28):排序概述(分类)、直接插入排序思路

    目录 排序分类:(本章目录) 按数据存储介质:(学习内容) 内部排序: 外部排序: 按比较器个数:(学习内容) 串行排序: 并行排序: 按主要操作:(学习内容、里面的排序都会重点学) 比较排序: 基数排序: 按辅助空间: 原地排序: 非原地排序: 按稳定性: 稳

    2023年04月26日
    浏览(39)
  • 数据结构—串的概述与算法【求子串、比较、删除、插入、扩容、模式匹配】

    💂 个人网站:  路遥叶子 🤟 版权: 本文由【路遥叶子】原创、在CSDN首发、需要转载请联系博主 💬 如果文章对你有帮助、 欢迎 关注、点赞、收藏 (一键三连)和订阅专栏哦 💅  想寻找共同成长的小伙伴,请点击【 Java全栈开发社区 】

    2023年04月16日
    浏览(41)
  • 【数据结构与算法分析】使用C语言实现队列的两种(带头结点与不带头结点)链式存储,并且给出一种循环队列的设计思想

      当我们编写程序时,经常需要处理各种数据结构。队列是一种常见的数据结构,它有着广泛的应用场景。队列的基本操作包括入队和出队,应用于模拟等待队列、消息队列、计算机缓存等场合。   在实际编程中,我们可以用不同的数据结构来实现队列。本文主要介绍了

    2024年02月08日
    浏览(102)
  • HNU数据结构与算法分析-作业1-算法分析

      1. (简答题) 1.(教材3.4)(a)假设某一个算法的时间代价为 ,对于输入规模n,在某台计算机上实现并完成该算法的时间为t秒。现在另有一台计算机,运行速度为第一台的64倍,那么t秒内新机器上能完成的输入规模为多大? 2.(教材3.12) 写出下列程序段平均情况下时间代

    2024年02月05日
    浏览(44)
  • HNU数据结构与算法分析-作业2-线性结构

      1. (简答题) 4.1 假设一个线性表包含下列元素: |2,23,15,5,9 使用Shaffer编写的教材《数据结构与算法分析》的List ADT编写一些C++语句,删除值为15的元素。 (要求:采用C或C++语言描述算法) 4.6 使用Shaffer编写的教材《数据结构与算法分析》的LList类,给LList类的实现添加一个成

    2024年02月05日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包