计算机视觉实战项目2(单目测距+图像处理+路径规划+车牌识别)

这篇具有很好参考价值的文章主要介绍了计算机视觉实战项目2(单目测距+图像处理+路径规划+车牌识别)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

车牌识别

用python3+opencv3做的中国车牌识别,包括算法和客户端界面,只有2个文件,一个是界面代码,一个是算法代码,点击即可出结果,方便易用!
链接:车牌识别
大致的UI界面如下,点击输入图片,右侧即可出现结果!
计算机视觉实战项目2(单目测距+图像处理+路径规划+车牌识别),计算机视觉,图像处理,目标跟踪,图像去雾,车牌识别,A star算法,路径规划

代码

额外说明:算法代码只有500行,测试中发现,车牌定位算法的参数受图像分辨率、色偏、车距影响。

--->qq 1309399183----------<代码交流
	def from_pic(self):
		self.thread_run = False
		self.pic_path = askopenfilename(title="选择识别图片", filetypes=[("jpg图片", "*.jpg")])
		if self.pic_path:
			img_bgr = predict.imreadex(self.pic_path)
			self.imgtk = self.get_imgtk(img_bgr)
			self.image_ctl.configure(image=self.imgtk)
			resize_rates = (1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4)
			for resize_rate in resize_rates:
				print("resize_rate:", resize_rate)
				r, roi, color = self.predictor.predict(img_bgr, resize_rate)
				if r:
					break
			#r, roi, color = self.predictor.predict(img_bgr, 1)
			self.show_roi(r, roi, color)

图像去雾去雨+目标检测+单目测距结合

实时感知本车周围物体的距离对高级驾驶辅助系统具有重要意义,当判定物体与本车距离小于安
链接:单目测距
全距离时便采取主动刹车等安全辅助功能,这将进一步提升汽车的安全性能并减少碰撞的发生。上一章本文完成了目标检测任务,接下来需要对检测出来的物体进行距离测量。

  • 首先描述并分析了相机成像模型,推导了图像的像素坐标系与世界坐标系之间的关系。
  • 其次,利用软件标定来获取相机内外参数并改进了测距目标点的选取。
  • 最后利用测距模型完成距离的测量并对采集到的图像进行仿真分析和方法验证。

计算机视觉实战项目2(单目测距+图像处理+路径规划+车牌识别),计算机视觉,图像处理,目标跟踪,图像去雾,车牌识别,A star算法,路径规划

代码


        for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Warmup
        if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
            old_img_b = img.shape[0]
            old_img_h = img.shape[2]
            old_img_w = img.shape[3]
            for i in range(3):
                model(img, augment=opt.augment)[0]

        # Inference
        t1 = time_synchronized()
        with torch.no_grad():   # Calculating gradients would cause a GPU memory leak
            pred = model(img, augment=opt.augment)[0]
        t2 = time_synchronized()
         distance=object_point_world_position(u, v, h, w, out_mat, in_mat):

路径规划

本节针对越野场景路径规划问题,采用栅格法建立障碍物、威胁物和越野道路模型,模拟真实的越野环境场景。

  • 引入方向变化惩罚和局部区域复杂度惩罚来优化A算法,使算法规划出的路径更平滑,算法效率更高效。

  • 采用改进 Floyd 算法对路径进行双向平滑,并且进行了防碰撞处理,来确保规划出路径的安全可靠性。

  • 仿真结果表明,所改进的 A算法与传统算法相比较,效率提高了 30%,拐点数减少了4
    倍,所提算法能够在越野环境多重因素综合影响以及不同车辆性能和任务的要求下快速的规划出安全的路径。

计算机视觉实战项目2(单目测距+图像处理+路径规划+车牌识别),计算机视觉,图像处理,目标跟踪,图像去雾,车牌识别,A star算法,路径规划

代码

###############创建A-Star类############
class AStar:
    
    # 描述AStar算法中的节点数据
    class Node:  
        #初始化
        def __init__(self, point, startPoint,endPoint, g=0,w=1,p=1):
            self.point = point  # 自己的坐标
            self.father = None  # 父节点
            self.g = g       # g值,g值在用到的时候会重新算
            
            # 计算h值,采用曼哈顿距离
            #self.h = (abs(endPoint.x - point.x) + abs(endPoint.y - point.y)) * 10  
            
            #采用欧几里得距离
            #self.h = math.pow((math.pow((endPoint.x - point.x),2) + math.pow((endPoint.y - point.y),2)),0.5)*10
            
            #采用对角距离
            pp=(1-p)+0.2*math.exp((math.pow((math.pow((endPoint.x - point.x),2) + math.pow((endPoint.y - point.y),2)),0.5))/(math.pow((math.pow((endPoint.x - startPoint.x),2) + math.pow((endPoint.y - startPoint.y),2)),0.5)))
            Diagonal_step = min((endPoint.x - point.x),(endPoint.y - point.y))
            straight_step = (abs(endPoint.x - point.x) + abs(endPoint.y - point.y)) - 2*Diagonal_step
            self.h  =(straight_step + math.pow(2,0.5)*Diagonal_step)*10*pp
            #print(pp)


            
    #初始化A-start
    def __init__(self, map2d, startPoint, endPoint, passTag=1.0):#map2d地图信息,startPoint起点, endPoint终点, passTag=1.0为不可行驶区域

        # 开启表
        self.openList = []
        # 关闭表
        self.closeList = []
        # 寻路地图
        self.map2d = map2d
        # 起点终点
        if isinstance(startPoint, Point) and isinstance(endPoint, Point):
            self.startPoint = startPoint
            self.endPoint = endPoint
        else:
            self.startPoint = Point(*startPoint)
            self.endPoint = Point(*endPoint)
 
        # 不可行走标记
        self.passTag = passTag
 
    def getMinNode(self):
        """
        获得openlist中F值最小的节点
        :return: Node
        """
        currentNode = self.openList[0]
        for node in self.openList:
            if node.g + node.h < currentNode.g + currentNode.h:
                currentNode = node
        return currentNode#返回最小代价的点
 

停车位检测

基于深度学习的鱼眼图像中的停车点检测和分类是为二维物体检测而开发的。我们的工作增强了预测关键点和方框的能力。这在许多场景中很有用,因为对象不能用右上的矩形“紧密”表示。
一个这样的例子,道路上的任何标记,由于透视效果,在现实世界中的对象矩形不会在图像中保持矩形,所以关键点检测显得格外重要。鱼眼图像还呈现了观察到这种现象的另一种场景,由于鱼眼宽广的视角,可以扑捉更多画像

链接:停车位检测

计算机视觉实战项目2(单目测距+图像处理+路径规划+车牌识别),计算机视觉,图像处理,目标跟踪,图像去雾,车牌识别,A star算法,路径规划

代码

#全部代码可加qq1309399183
def train():
    #parses command line args
    args = parse_args()

    #parses args from file
    if args.config_file is not None:
        cfg_from_file(args.config_file)

    if (args.FIX_MODEL_CHECKPOINT):
      args.FIX_MODEL_CHECKPOINT = args.FIX_MODEL_CHECKPOINT.replace(" ", "")
      args.FIX_MODEL_CHECKPOINT = args.FIX_MODEL_CHECKPOINT.replace("=", "")
      cfg.RESUME_CHECKPOINT = args.FIX_MODEL_CHECKPOINT
      cfg.CHECK_PREVIOUS = False
      if (os.path.exists(cfg.RESUME_CHECKPOINT) == False):
          print('Exiting the process as asked model for resuming is not found')
          exit()

    if (args.RESUME_CHECKPOINT):
      cfg.RESUME_CHECKPOINT = args.RESUME_CHECKPOINT

    if (args.LOG_DIR):
      cfg.EXP_DIR = args.LOG_DIR

    cfg.LOG_DIR = cfg.EXP_DIR

    if (args.PHASE):
      cfg.PHASE = []
      cfg.PHASE.append(args.PHASE)

    if (args.EVAL_METHOD):
      cfg.DATASET.EVAL_METHOD = args.EVAL_METHOD

    #for backward compatibility
    if cfg.DATASET.DATASET == 'psd':
      cfg.DATASET.DATASET = 'tiod'

    if cfg.DATASET.BGR_OR_RGB == True:
        #cfg.DATASET.PIXEL_MEANS = (123.68, 116.78, 103.94)
        #cfg.DATASET.PIXEL_MEANS = (123, 117, 104)
        cfg.DATASET.PIXEL_MEANS = (128.0, 128.0, 128.0) # simpler mean subtraction to keep data in int8 after mean subtraction

    print("cfg: ", cfg)

    for phase in cfg.PHASE:
      cfg_dir = cfg.LOG_DIR + '/' + phase + '_cfg/'
      os.makedirs(os.path.dirname(cfg_dir), exist_ok=True)
      shutil.copy(args.config_file, cfg_dir)

    # to making every run consistent # TII
    np.random.seed(100)
    torch.manual_seed(100)
    torch.cuda.manual_seed(100)
    random.seed(100)
    torch.cuda.manual_seed_all(999)
    torch.backends.cudnn.enabled = False

    train_model()

if __name__ == '__main__':
    train()

图像雾去雨与目标检测

针对不同的天气则采取不同的图像前处理方法来提升图像质量。雾天天气 时,针对当下求解的透射率会导致去雾结果出现光晕、伪影现象,本文采用加权最小二乘法细化透射率透。针对四叉树法得到的大气光值不精确的问题,改进四叉树法来解决上述问题。将上述得到的透射率和大气光值代入大气散射模型完成去雾处理;

在图像处理后加入目标检测,提高了目标检测精度以及目标数量。
下图展现了雾天处理后的结果
图第一列为雾霾图像,第二列为没有加入图像处理的目标检测结果图,第三列为去雾后的目标检测结果图。

计算机视觉实战项目2(单目测距+图像处理+路径规划+车牌识别),计算机视觉,图像处理,目标跟踪,图像去雾,车牌识别,A star算法,路径规划文章来源地址https://www.toymoban.com/news/detail-723127.html

到了这里,关于计算机视觉实战项目2(单目测距+图像处理+路径规划+车牌识别)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用计算机视觉实战项目精通 OpenCV:6~8

    原文:Mastering OpenCV with Practical Computer Vision Projects 协议:CC BY-NC-SA 4.0 译者:飞龙 本文来自【ApacheCN 计算机视觉 译文集】,采用译后编辑(MTPE)流程来尽可能提升效率。 当别人说你没有底线的时候,你最好真的没有;当别人说你做过某些事的时候,你也最好真的做过。 非刚

    2023年04月21日
    浏览(62)
  • 计算机视觉项目实战-基于特征点匹配的图像拼接

    😊😊😊 欢迎来到本博客 😊😊😊 本次博客内容将继续讲解关于OpenCV的相关知识 🎉 作者简介 : ⭐️⭐️⭐️ 目前计算机研究生在读。主要研究方向是人工智能和群智能算法方向。目前熟悉深度学习(keras、pytorch、yolo),python网页爬虫、机器学习、计算机视觉(OpenCV)、

    2024年02月02日
    浏览(35)
  • 目标检测 图像处理 计算机视觉 工业视觉

    从事ai视觉算法有几年了,本帖是对以往做过的计算机视觉项目的一些总结,硬件部署的大多是基于nvidia的开发板和GPU服务器上,如jetson nano,还有地平线J3J5和瑞芯微以及星辰的开发板,另外就是对实时性要求不高的部署在cpu上。有相关项目需求可以一起交流和学习。(+v 3

    2024年02月06日
    浏览(34)
  • 计算机视觉——图像处理基础

    随着计算机视觉的不断发展,图像的预处理成为分析图像的必然前提,本文就介绍图像处理的基础内容。 图像中,高频部分是图像中像素值落差很大的部分,如图像边缘,该部分的有用信息经常被噪声淹没。降低高频段的噪声是设计图像滤波器的关键。 图像滤波器就是一个

    2024年01月19日
    浏览(47)
  • 机器视觉、图像处理和计算机视觉:概念和区别

    机器视觉、图像处理和计算机视觉:概念和区别nbsp; 机器视觉、图像处理和计算机视觉是相关但有区别的概念。 机器视觉主要应用于工业领域,涉及图像感知、图像处理、控制理论和软硬件的结合,旨在实现高效的运动控制或实时操作。 图像处理是指利用计算机对图像进行

    2024年02月06日
    浏览(32)
  • 图像处理与计算机视觉算法

    图像处理与计算机视觉算法是实现对图像和视频内容分析、理解和操作的一系列技术。这些算法可以分为多个类别,包括但不限于以下几个主要方面: 预处理 : 像素操作:灰度化、二值化、直方图均衡化等,用于改善图像的对比度和亮度分布。 去噪:高斯滤波、中值滤波、

    2024年02月22日
    浏览(39)
  • 计算机视觉图像处理常用方法汇总

    光线进入眼睛:当光线从一个物体反射或散射出来,进入人的眼睛时,它们通过角膜和晶状体进入眼球内部。 聚焦光线:角膜和晶状体将光线聚焦在视网膜上。晶状体可以通过调整其形状来调节聚焦距离,使物体的图像清晰地映射在视网膜上。 光敏细胞感受光线:视网膜是

    2024年02月07日
    浏览(37)
  • 图像处理/计算机视觉期刊投稿经验

    我不配,以后有机会再说吧。 我也不配,以后有机会再说吧。 2022年投过,一个月之后被编辑immediate reject, 原因是“the scope not aligning well with the theme interest and/or desired genres of TSP”。在邮件的末尾,编辑表示manuscript的选题“well motivated”并且“interesting”,主要担忧是所用到的

    2024年02月08日
    浏览(44)
  • 【计算机视觉】数字图像处理(四)—— 图像增强

    图像增强是采用一系列技术去改善图像的视觉效果,或将图像转换成一种更适合于人或机器进行分析和处理的形式。例如采用一系列技术有选择地突出某些感兴趣的信息,同时抑制一些不需要的信息,提高图像的使用价值。 图像增强方法 图像增强方法从增强的作用域出发,可

    2023年04月16日
    浏览(83)
  • 【计算机视觉】数字图像处理(六)—— 图像压缩

    (一)、图像编码技术的研究背景 1. 信息信息传输方式发生了很大的改变 通信方式的改变 文字+语音 图像+文字+语音 通信对象的改变 人与人 人与机器,机器与机器 2. 图像传输与存储需要的信息量空间 (1)彩色视频信息 对于电视画面的分辨率640 480的彩色图像,每秒30帧,

    2024年02月05日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包