自动驾驶:控制算法概述

这篇具有很好参考价值的文章主要介绍了自动驾驶:控制算法概述。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

常见控制算法

PID算法

PID(Proportional-Integral-Derivative)控制是一种经典的反馈控制算法,通常用于稳定性和响应速度要求不是特别高的控制系统。PID控制基于三个主要组成部分:比例项(P),积分项(I),和微分项(D)。比例项根据当前误差来产生控制输出,积分项处理历史误差的总和,微分项处理误差变化的速度。PID控制通常通过多次试验、调整参数来实现,通过对PID参数的调节进而改善系统的性能,如稳定性、超调和振荡等。

PID控制算法的控制输出计算如下:
u ( t ) = K p ⋅ e ( t ) + K i ⋅ ∫ 0 t e ( τ ) d τ + K d ⋅ d e ( t ) d t u(t) = K_p\cdot e(t) + K_i \cdot \int_0^t e(\tau)d\tau + K_d \cdot \frac{de(t)}{dt} u(t)=Kpe(t)+Ki0te(τ)dτ+Kddtde(t)

其中, u ( t ) u(t) u(t)是控制输出, K p K_p Kp K i K_i Ki K d K_d Kd分别是比例、积分和微分系数, e ( t ) e(t) e(t)是当前误差, d e ( t ) d t \frac{de(t)}{dt} dtde(t)是误差的变化率。

  • 比例项(P - Proportional):
    比例项与当前误差成正比,用来调整控制输出。当前误差是期望值与实际值之间的差值。
    比例项的作用是减小误差,使系统更快地接近期望值。
    比例系数(通常表示为 K p K_p Kp)用来控制比例项的影响,过大的 K p K_p Kp可能引起超调,而过小的 K p K_p Kp可能导致响应过慢。
  • 积分项(I - Integral):
    积分项用来处理历史误差的总和。它消除系统的稳态误差,确保系统最终稳定在期望值附近。
    积分项的作用是减小稳态误差,特别是在系统存在系统饱和或其他非线性问题时。
    积分系数(通常表示为 K i K_i Ki)控制积分项的影响,过大的 K i K_i Ki可能导致系统不稳定,而过小的 K i K_i Ki可能使响应过慢。
  • 微分项(D - Derivative):
    微分项用来处理误差变化的速度,预测未来误差趋势。它有助于减小振荡和改善系统的响应速度。
    微分项的作用是减小系统的振荡,尤其在系统响应速度需要控制的情况下。
    微分系数(通常表示为 K d K_d Kd)控制微分项的影响,过大的 K d K_d Kd可能引起噪声敏感性,而过小的 K d K_d Kd可能无法改善振荡问题。

PID控制对于线性系统和某些非线性系统非常有效,但不适用于所有类型的系统,而且它需要多次试验不断调參才能满足系统性能要求。对于一些复杂系统,更高级控制策略可能更为合适。

LQR算法

LQR(Linear Quadratic Regulator)控制算法是一种用于线性系统的最优控制方法,旨在寻找一种最优的控制策略,以最小化一个线性二次性能指标。LQR控制输入是系统状态的线性组合以及反馈信号,输出控制信号。它可以用于稳态和动态控制以及应用于多变量系统,通过权重矩阵调整性能指标,以满足特定需求。LQR的设计需要系统的状态空间模型和性能指标,通常使用状态反馈来调整系统行为,并可以提供最优的控制输入,使系统稳定并满足性能要求。

  1. 系统模型
    LQR控制的第一步是建立线性时间不变(LTI)系统的状态空间模型。这个模型通常由状态方程和输出方程组成。
    状态方程描述了系统状态(状态向量)如何随时间演变,通常用如下形式表示:
    x ˙ ( t ) = A x ( t ) + B u ( t ) \dot{x}(t) = Ax(t) + Bu(t) x˙(t)=Ax(t)+Bu(t)
    输出方程描述了系统状态和控制输入之间的关系,通常用如下形式表示:
    y ( t ) = C x ( t ) + D u ( t ) y(t) = Cx(t) + Du(t) y(t)=Cx(t)+Du(t)
    其中, x ( t ) x(t) x(t)是状态向量, x ˙ ( t ) \dot{x}(t) x˙(t)是状态向量的导数, u ( t ) u(t) u(t)是控制输入, y ( t ) y(t) y(t)是系统的输出, A A A B B B C C C D D D是系统的矩阵参数。
  2. 性能指标
    LQR控制的目标是最小化一个线性二次性能指标,通常称为LQR性能指标或成本函数。
    LQR性能指标的一般形式如下:
    J = ∫ 0 ∞ ( x T Q x + u T R u ) d t J = \int_0^\infty \left( x^T Q x + u^T R u \right) dt J=0(xTQx+uTRu)dt
    其中, Q Q Q是状态权重矩阵, R R R是控制输入权重矩阵。这些权重矩阵可以用来调整性能指标的权重,以满足特定的性能要求。
  3. 最有控制策略
    LQR控制通过求解Riccati方程来找到最优的控制策略。Riccati方程的一般形式如下:
    A T P + P A − ( P B ) R − 1 ( B T P ) + Q = 0 A^T P + PA - (PB)R^{-1}(B^T P) + Q = 0 ATP+PA(PB)R1(BTP)+Q=0
    这里, P P P是状态反馈矩阵,包含了最优控制策略的信息。 R R R Q Q Q是性能指标中的权重矩阵, A A A B B B是系统的状态方程参数。
    一旦求解了Riccati方程,最优的状态反馈矩阵 P P P就可以用来计算最优的控制输入,通常如下:
    u ( t ) = − R − 1 B T P x ( t ) u(t) = -R^{-1}B^T P x(t) u(t)=R1BTPx(t)
  4. 闭环控制
    一旦找到了最优的状态反馈矩阵PP,可以将其应用于系统,以实现闭环控制。
    最优的控制输入可以通过 u ( t ) = − R − 1 B T P x ( t ) u(t) = -R^{-1}B^T P x(t) u(t)=R1BTPx(t)计算,并用于调整系统状态,使系统的性能指标最小化。

然而,LQR控制也有一些限制,主要是它要求系统是线性的,且系统参数必须是已知的。对于非线性系统或具有参数不确定性的系统,可能需要使用其他控制策略,如模型预测控制(MPC)。

MPC算法

MPC(Model Predictive Control)控制算法是一种先进的模型预测控制策略,通常用于复杂、非线性、时变和多变量系统。MPC的核心思想是在每个时刻基于系统数学模型对未来的系统行为进行预测,并通过优化来选择最优的控制输入序列,以满足性能和约束要求。MPC允许系统在考虑约束条件下实时调整控制策略,以满足性能和操作限制,它处理复杂系统和需要考虑多种约束的情况下非常有效。

  1. 系统模型:
    MPC的核心是系统的动态模型,这个模型通常以状态空间形式表示,包括状态方程和输出方程。
    状态方程描述了系统状态如何随时间演变,通常表示为:
    x ( k + 1 ) = f ( x ( k ) , u ( k ) ) x(k+1) = f(x(k), u(k)) x(k+1)=f(x(k),u(k))
    输出方程描述了系统状态和控制输入之间的关系,通常表示为:
    y ( k ) = g ( x ( k ) ) y(k) = g(x(k)) y(k)=g(x(k))
    在MPC中,系统模型通常是非线性的,但也可以是线性的。
  2. 性能指标:
    MPC的目标是通过调整控制输入来最小化一个性能指标,通常是成本函数,以满足性能要求。
    一般性能指标的形式如下:
    J = ∑ k = 0 N − 1 ( ℓ ( x ( k ) , u ( k ) ) + m ( x ( N ) ) ) J = \sum_{k=0}^{N-1} \left( \ell(x(k), u(k)) + m(x(N)) \right) J=k=0N1((x(k),u(k))+m(x(N)))
    其中, N N N是控制预测的时域长度, ℓ ( ⋅ ) \ell(\cdot) ()表示每个时刻的瞬时成本, m ( ⋅ ) m(\cdot) m()表示终端成本。
  3. 控制预测:
    在每个时刻,MPC对未来的系统行为进行预测,计算一系列控制输入,通常称为控制输入序列。
    这些预测是通过模拟系统状态演变,基于当前状态和控制输入,利用系统模型来完成的。
    预测时域通常涵盖多个时刻,以确保系统在未来时间内满足性能指标。
  4. 优化问题:
    MPC使用一个优化算法来选择最优的控制输入序列,以最小化性能指标。
    优化问题的目标是在满足约束条件的情况下,最小化性能指标。
    优化问题通常是非线性的,并可以包括状态、控制输入和约束的非线性约束条件。
  5. 控制策略:
    一旦找到最优的控制输入序列,只应用第一个控制输入,然后在下一个时刻重新计算。
    这使得MPC成为一种适用于非线性系统和多变量系统的灵活控制策略,可以在实时中重新优化控制输入。
  6. 约束条件:
    MPC可以处理各种约束条件,包括状态、控制输入和输出的约束。
    这些约束可用于确保系统在操作限制内运行,以避免不稳定或不安全的操作。

然而,MPC控制算法需要较强的计算能力,因为它涉及到在线优化问题的求解。而且它对系统模型的准确性要求较高,可能需要对控制器的参数进行精细调整以实现所需的性能。

自动驾驶控制算法

自动驾驶控制往往是横纵向解耦控制,横向控制器一般采用LQR算法,而纵向控制器一般采用PID算法,下面将详细介绍横纵向控制。

横向控制

横向控制的输入车辆位置(定位信息)、车身参数信息(底盘信息)和规划轨迹,它主要通过改变方向盘扭矩或转角等进而控制车辆的前轮转角,使车辆按照规划的路径行驶。如下图所示,横向控制主要由前馈开环控制器和反馈闭环控制器构成。
自动驾驶:控制算法概述,自动驾驶,自动驾驶,人工智能,控制,算法

纵向控制

纵向控制的输入为规划的位置、速度和加速度,它主要为速度控制,通过控制刹车和油门等实现对车速的控制,如下图所示,纵向控制主要由两个闭环控制和一个开环控制组成。
自动驾驶:控制算法概述,自动驾驶,自动驾驶,人工智能,控制,算法

参考文献

Apollo代码学习(五)—横纵向控制文章来源地址https://www.toymoban.com/news/detail-723148.html

到了这里,关于自动驾驶:控制算法概述的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 如何使用RPA自动化人工智能和自动驾驶汽车

    人工智能和自动驾驶汽车是当今科技领域的热门话题。在这篇文章中,我们将探讨如何使用RPA(Robotic Process Automation)自动化人工智能和自动驾驶汽车。 RPA是一种自动化软件技术,它可以自动完成人类工作,提高工作效率。在人工智能和自动驾驶汽车领域,RPA可以帮助我们自动

    2024年02月20日
    浏览(65)
  • 【AI赋能】人工智能在自动驾驶时代的应用

    引言 人工智能引领现代,智能AI赋能未来。 它在当今社会和科技领域中具有重要性。 本文将着重探讨人工智能对自动驾驶技术的深度赋能和应用场景等。 有时我们乘坐网约车的时候,能打到无人驾驶汽车,全程均为AI语音播报: 自动驾驶是指通过使用 各种传感器 、 计算机

    2024年02月17日
    浏览(61)
  • 自动驾驶:控制算法概述

    PID(Proportional-Integral-Derivative)控制是一种经典的反馈控制算法,通常用于稳定性和响应速度要求不是特别高的控制系统。PID控制基于三个主要组成部分:比例项(P),积分项(I),和微分项(D)。比例项根据当前误差来产生控制输出,积分项处理历史误差的总和,微分项

    2024年02月07日
    浏览(37)
  • 深度学习之路:自动驾驶沙盘与人工智能专业的完美融合

    引言: 在数字化时代,深度学习如一颗耀眼的明星,将人工智能推向新的高峰。本文将深度剖析自动驾驶沙盘与人工智能专业的紧密结合,旨在揭示这一融合对于中职和高职类人工智能专业的学子们的巨大意义。通过以图像识别技术为入口,我们将探讨自动驾驶沙盘在培养学

    2024年02月04日
    浏览(65)
  • 人工智能分类算法概述

    人工智能分类算法是用于将数据划分为不同类别的算法。这些算法通过学习数据的特征和模式,将输入数据映射到相应的类别。分类算法在人工智能中具有广泛的应用,如图像识别、语音识别、文本分类等。以下是几种常见的人工智能分类算法的详细讲解过程: 决策树 决策

    2024年04月11日
    浏览(43)
  • 【Python | 人工智能】一文讲清AI赋能自动驾驶的底层原理

    引言 人工智能引领现代,智能AI赋能未来。 它在当今社会和科技领域中具有重要性。 本文将着重探讨人工智能对自动驾驶技术的深度赋能和应用场景等。 有时我们乘坐网约车的时候,能打到无人驾驶汽车,全程均为AI语音播报: 自动驾驶是指通过使用 各种传感器 、 计算机

    2024年02月04日
    浏览(55)
  • 自动驾驶国家新一代人工智能开放创新平台产业化应用

    【摘要】:当前,全球新一轮科技革命和产业变革正孕育兴起,自动驾驶作为人工智能最重要的应用载体之一,对于加快交通强国、智能汽车强国建设,具有十分突出的战略意义。我国自动驾驶研发应用,面临技术、资金、应用等诸多挑战,为此,需要打造一套符合我国国情

    2024年02月14日
    浏览(63)
  • 【深入探讨人工智能】AI大模型在自动驾驶中的应用

    当今, AI大模型 是一个火热的。随着人工智能的迅猛发展,AI大模型在各个领域展现出了巨大的潜力和应用价值。在自动驾驶领域,AI大模型的应用驱动自动驾驶算法具备更强的泛化能力。 那么 AI大模型 为自动驾驶赋能了什么?它的未来发展前景又是怎样? 本文将以

    2024年02月08日
    浏览(53)
  • 【探索AI未来】自动驾驶时代下的人工智能技术与挑战

    自动驾驶时代是指人工智能和相关技术在汽车行业中广泛应用,使得 汽车能够在不需要人类干预的情况下自主进行驾驶操作 的车辆新时代。在自动驾驶时代,车辆配备了感知、决策和控制系统,利用传感器、摄像头、雷达、激光等设备来获取周围环境信息,并通过人工智能

    2024年02月11日
    浏览(69)
  • 特斯拉Dojo超算:AI训练平台的自动驾驶与通用人工智能之关键

    特斯拉公开Dojo超算架构细节,AI训练算力平台成为其自动驾驶与通用人工智能布局的关键一环 在近日举行的Hot Chips 34会议上,特斯拉披露了其自主研发的AI超算Dojo的详细信息。Dojo是一个可定制的超级计算机,从芯片到系统全部由特斯拉自主设计,主要目标是高效运行各种机

    2024年02月07日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包