Pytorch:cat、stack、squeeze、unsqueeze的用法

这篇具有很好参考价值的文章主要介绍了Pytorch:cat、stack、squeeze、unsqueeze的用法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Pytorch:cat、stack、squeeze、unsqueeze的用法

torch.cat

在指定原有维度上链接传入的张量,所有传入的张量都必须是相同形状

torch.cat(tensors, dim=0, *, out=None) → Tensor

tensor:相同形状的tensor
dim:链接张量的维度,不能超过传入张量的维度

x = torch.tensor([[0, 1, 2]], dtype= torch.float)
y = torch.tensor([[3, 4, 5]], dtype= torch.int)
print(x.shape, y.shape)
print("-"*50)
z = torch.cat((x, y), dim= 0)
print(z)
print(z.shape)
print("-"*50)
z = torch.cat((x, y), dim= 1)
print(z)
print(z.shape)

Pytorch:cat、stack、squeeze、unsqueeze的用法,DL,pytorch,人工智能,python

torch.stack

在一个新的维度上链接张量,输入张量都必须是相同形状的

torch.stack(tensors, dim=0, *, out=None) → Tensor

tensor:相同形状的张量
dim:插入的张量维度,在0和输出张量维度(比输入张量维度多一个)之间

x = torch.tensor([[0, 1, 2]])
y = torch.tensor([[3, 4, 5]])
print(x.shape, y.shape)
print("-"*50)
z = torch.stack((x, y), dim= 0)
print(z)
print(z.shape)
print("-"*50)
z = torch.stack((x, y), dim= 1)
print(z)
print(z.shape)
print("-"*50)
z = torch.stack((x, y), dim= 2)
print(z)
print(z.shape)

Pytorch:cat、stack、squeeze、unsqueeze的用法,DL,pytorch,人工智能,python

torch.squeeze

压缩张量,去掉输入张量中大小为1的维度,例如:(Ax1xBxCx1)->(AxBxC)

torch.squeeze(input, dim=None) → Tensor

input (Tensor):输入张量
dim (int or tuple of ints, optional):只压缩某个维度,可以不指定,就是压缩所有大小为1的维度

x = torch.tensor([[0, 1, 2]])
y = torch.rand(size= (1, 2, 1, 2, 1))
print(x.shape, y.shape)
print("-"*50)
z = torch.squeeze(x)
print(z)
print(z.shape)
print("-"*50)
z = torch.squeeze(y)
print(z)
print(z.shape)

Pytorch:cat、stack、squeeze、unsqueeze的用法,DL,pytorch,人工智能,python

torch.unsqueeze

在输入张量中指定位置插入一个大小为1的维度

torch.unsqueeze(input, dim) → Tensor

input (Tensor):输入张量
dim (int):插入维度的指定位置

x = torch.randn(size= (2,3))
print(x.shape)
print("-"*50)
z = torch.unsqueeze(x, 0)
print(z)
print(z.shape)
print("-"*50)
z = torch.unsqueeze(x, 1)
print(z)
print(z.shape)

Pytorch:cat、stack、squeeze、unsqueeze的用法,DL,pytorch,人工智能,python文章来源地址https://www.toymoban.com/news/detail-723797.html

到了这里,关于Pytorch:cat、stack、squeeze、unsqueeze的用法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • dl----pytorch基础知识

    0.torch安装 1.torch的基础单位tensor torch.function torch.save/torch.sum(a,b) tensor.function tensor.view/a.sum(b) a.add(b) # 加法的结果返回新的tensor a.add_(b) # 加法的结果存在a中 2.创建tensor的操作 3.调整tensor 4. 索引操作 5.Tensor数据类型 数据类型 CPU tensor GPU tensor 32bit浮点 torch.FloatTensor torch.cuda.Floa

    2024年02月13日
    浏览(34)
  • 动手学DL——MLP多层感知机【深度学习】【PyTorch】

    加入一个或多个隐藏层+激活函数来克服线性模型的限制, 使其能处理更普遍的函数关系类型,这种架构通常称为 多层感知机 (multilayer perceptron)。 输入层不涉及任何计算,因此使用此网络产生输出只需要实现隐藏层和输出层的计算。 4.1.1、隐层 通用近似定理 多层感知机可

    2024年02月13日
    浏览(54)
  • 【PyTorch】torch.cat() 和 torch.concat() 的区别

    两者没区别 根据 PyTorch 官方文档:https://pytorch.org/docs/stable/generated/torch.concat.html torch.concat() 是 torch.cat() 的别称,无区别

    2024年02月12日
    浏览(37)
  • 动手学DL——环境部署随笔【深度学习】【Anaconda】【CUDA】【PyTorch】【jupyter】

    记录虚拟环境安装部署细节,以备重装。 anaconda 2022.10 windows 版本,https://repo.anaconda.com/archive/ 加入环境变量(3/3) D:anaconda3 D:anacondaScripts D:anacondaLibrarybin 配置虚拟环境,命名为 pytorch 查看当前所有的虚拟环境 激活 pytorch 这个虚拟环境 新环境下包很少,安装科学计算库 检查

    2024年02月13日
    浏览(55)
  • 人工智能(pytorch)搭建模型9-pytorch搭建一个ELMo模型,实现训练过程

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型9-pytorch搭建一个ELMo模型,实现训练过程,本文将介绍如何使用PyTorch搭建ELMo模型,包括ELMo模型的原理、数据样例、模型训练、损失值和准确率的打印以及预测。文章将提供完整的代码实现。 ELMo模型简介 数据

    2024年02月07日
    浏览(67)
  • 人工智能学习07--pytorch15(前接pytorch10)--目标检测:FPN结构详解

    backbone:骨干网络,例如cnn的一系列。(特征提取) (a)特征图像金字塔 检测不同尺寸目标。 首先将图片缩放到不同尺度,针对每个尺度图片都一次通过算法进行预测。 但是这样一来,生成多少个尺度就要预测多少次,训练效率很低。 (b)单一特征图 faster rcnn所采用的一种方式

    2023年04月12日
    浏览(74)
  • 人工智能(Pytorch)搭建模型6-使用Pytorch搭建卷积神经网络ResNet模型

    大家好,我是微学AI,今天给大家介绍一下人工智能(Pytorch)搭建模型6-使用Pytorch搭建卷积神经网络ResNet模型,在本文中,我们将学习如何使用PyTorch搭建卷积神经网络ResNet模型,并在生成的假数据上进行训练和测试。本文将涵盖这些内容:ResNet模型简介、ResNet模型结构、生成假

    2024年02月06日
    浏览(78)
  • 人工智能学习07--pytorch14--ResNet网络/BN/迁移学习详解+pytorch搭建

    亮点:网络结构特别深 (突变点是因为学习率除0.1?) 梯度消失 :假设每一层的误差梯度是一个小于1的数,则在反向传播过程中,每向前传播一层,都要乘以一个小于1的误差梯度。当网络越来越深的时候,相乘的这些小于1的系数越多,就越趋近于0,这样梯度就会越来越小

    2023年04月11日
    浏览(159)
  • 人工智能(pytorch)搭建模型10-pytorch搭建脉冲神经网络(SNN)实现及应用

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型10-pytorch搭建脉冲神经网络(SNN)实现及应用,脉冲神经网络(SNN)是一种基于生物神经系统的神经网络模型,它通过模拟神经元之间的电信号传递来实现信息处理。与传统的人工神经网络(ANN)不同,SNN 中的

    2024年02月08日
    浏览(50)
  • Pytorch实用教程:Pytorch中torch.max的用法

    torch.max 在 PyTorch 中是一个非常有用的函数,它可以用于多种场景,包括寻找张量中的最大值、沿指定维度进行最大值操作,并且还可以返回最大值的索引。其用法可以根据你的需求进行不同的调用方式。 基本用法 找到整个张量的最大值 如果直接对一个张量使用 torch.max ,它

    2024年04月13日
    浏览(34)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包