Flink状态管理与检查点机制

这篇具有很好参考价值的文章主要介绍了Flink状态管理与检查点机制。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本专栏案例代码和数据集链接:  https://download.csdn.net/download/shangjg03/88477960

1.状态分类

相对于其他流计算框架,Flink 一个比较重要的特性就是其支持有状态计算。即你可以将中间的计算结果进行保存,并提供给后续的计算使用:

Flink状态管理与检查点机制,Flink,flink,大数据,数据仓库

具体而言,Flink 又将状态 (State) 分为 Keyed State 与 Operator State:

1.1 算子状态

算子状态 (Operator State):顾名思义,状态是和算子进行绑定的,一个算子的状态不能被其他算子所访问到。官方文档上对 Operator State 的解释是:each operator state is bound to one parallel operator instance,所以更为确切的说一个算子状态是与一个并发的算子实例所绑定的,即假设算子的并行度是 2,那么其应有两个对应的算子状态:

Flink状态管理与检查点机制,Flink,flink,大数据,数据仓库

2.2 键控状态

键控状态 (Keyed State) :是一种特殊的算子状态,即状态是根据 key 值进行区分的,Flink 会为每类键值维护一个状态实例。如下图所示,每个颜色代表不同 key 值,对应四个不同的状态实例。需要注意的是键控状态只能在 KeyedStream 上进行使用,我们可以通过 stream.keyBy(...) 来得到 KeyedStream 。

Flink状态管理与检查点机制,Flink,flink,大数据,数据仓库

2.状态编程

2.1 键控状态

Flink 提供了以下数据格式来管理和存储键控状态 (Keyed State):

  • ValueState:存储单值类型的状态。可以使用  update(T) 进行更新,并通过 T value() 进行检索。 
  • ListState:存储列表类型的状态。可以使用 add(T) 或 addAll(List) 添加元素;并通过 get() 获得整个列表。
  • ReducingState:用于存储经过 ReduceFunction 计算后的结果,使用 add(T) 增加元素。
  • AggregatingState:用于存储经过 AggregatingState 计算后的结果,使用 add(IN) 添加元素。
  • FoldingState:已被标识为废弃,会在未来版本中移除,官方推荐使用 AggregatingState 代替。
  • MapState:维护 Map 类型的状态。

以上所有增删改查方法不必硬记,在使用时通过语法提示来调用即可。这里给出一个具体的使用示例:假设我们正在开发一个监控系统,当监控数据超过阈值一定次数后,需要发出报警信息。这里之所以要达到一定次数,是因为由于偶发原因,偶尔一次超过阈值并不能代表什么,故需要达到一定次数后才触发报警,这就需要使用到 Flink 的状态编程。相关代码如下:

public class ThresholdWarning extends 
    RichFlatMapFunction<Tuple2<String, Long>, Tuple2<String, List<Long>>> {

    // 通过ListState来存储非正常数据的状态
    private transient ListState<Long> abnormalData;
    // 需要监控的阈值
    private Long threshold;
    // 触发报警的次数
    private Integer numberOfTimes;

    ThresholdWarning(Long threshold, Integer numberOfTimes) {
        this.threshold = threshold;
        this.numberOfTimes = numberOfTimes;
    }

    @Override
    public void open(Configuration parameters) {
        // 通过状态名称(句柄)获取状态实例,如果不存在则会自动创建
        abnormalData = getRuntimeContext().getListState(
            new ListStateDescriptor<>("abnormalData", Long.class));
    }

    @Override
    public void flatMap(Tuple2<String, Long> value, Collector<Tuple2<String, List<Long>>> out)
        throws Exception {
        Long inputValue = value.f1;
        // 如果输入值超过阈值,则记录该次不正常的数据信息
        if (inputValue >= threshold) {
            abnormalData.add(inputValue);
        }
        ArrayList<Long> list = Lists.newArrayList(abnormalData.get().iterator());
        // 如果不正常的数据出现达到一定次数,则输出报警信息
        if (list.size() >= numberOfTimes) {
            out.collect(Tuple2.of(value.f0 + " 超过指定阈值 ", list));
            // 报警信息输出后,清空状态
            abnormalData.clear();
        }
    }
}

调用自定义的状态监控,这里我们使用 a,b 来代表不同类型的监控数据,分别对其数据进行监控:

final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource<Tuple2<String, Long>> tuple2DataStreamSource = env.fromElements(
    Tuple2.of("a", 50L), Tuple2.of("a", 80L), Tuple2.of("a", 400L),
    Tuple2.of("a", 100L), Tuple2.of("a", 200L), Tuple2.of("a", 200L),
    Tuple2.of("b", 100L), Tuple2.of("b", 200L), Tuple2.of("b", 200L),
    Tuple2.of("b", 500L), Tuple2.of("b", 600L), Tuple2.of("b", 700L));
tuple2DataStreamSource
    .keyBy(0)
    .flatMap(new ThresholdWarning(100L, 3))  // 超过100的阈值3次后就进行报警
    .printToErr();
env.execute("Managed Keyed State");

输出如下结果如下:

Flink状态管理与检查点机制,Flink,flink,大数据,数据仓库

2.2 状态有效期

以上任何类型的 keyed state 都支持配置有效期 (TTL) ,示例如下:

StateTtlConfig ttlConfig = StateTtlConfig
    // 设置有效期为 10 秒
    .newBuilder(Time.seconds(10))  
    // 设置有效期更新规则,这里设置为当创建和写入时,都重置其有效期到规定的10秒
    .setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite) 
    /*设置只要值过期就不可见,另外一个可选值是ReturnExpiredIfNotCleanedUp,
     代表即使值过期了,但如果还没有被物理删除,就是可见的*/
    .setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired)
    .build();
ListStateDescriptor<Long> descriptor = new ListStateDescriptor<>("abnormalData", Long.class);
descriptor.enableTimeToLive(ttlConfig);

2.3 算子状态

相比于键控状态,算子状态目前支持的存储类型只有以下三种:

  • ListState:存储列表类型的状态。
  • UnionListState:存储列表类型的状态,与 ListState 的区别在于:如果并行度发生变化,ListState 会将该算子的所有并发的状态实例进行汇总,然后均分给新的 Task;而 UnionListState 只是将所有并发的状态实例汇总起来,具体的划分行为则由用户进行定义。
  • BroadcastState:用于广播的算子状态。

这里我们继续沿用上面的例子,假设此时我们不需要区分监控数据的类型,只要有监控数据超过阈值并达到指定的次数后,就进行报警,代码如下:

public class ThresholdWarning extends RichFlatMapFunction<Tuple2<String, Long>, 
Tuple2<String, List<Tuple2<String, Long>>>> implements CheckpointedFunction {

    // 非正常数据
    private List<Tuple2<String, Long>> bufferedData;
    // checkPointedState
    private transient ListState<Tuple2<String, Long>> checkPointedState;
    // 需要监控的阈值
    private Long threshold;
    // 次数
    private Integer numberOfTimes;

    ThresholdWarning(Long threshold, Integer numberOfTimes) {
        this.threshold = threshold;
        this.numberOfTimes = numberOfTimes;
        this.bufferedData = new ArrayList<>();
    }

    @Override
    public void initializeState(FunctionInitializationContext context) throws Exception {
        // 注意这里获取的是OperatorStateStore
        checkPointedState = context.getOperatorStateStore().
            getListState(new ListStateDescriptor<>("abnormalData",
                TypeInformation.of(new TypeHint<Tuple2<String, Long>>() {
                })));
        // 如果发生重启,则需要从快照中将状态进行恢复
        if (context.isRestored()) {
            for (Tuple2<String, Long> element : checkPointedState.get()) {
                bufferedData.add(element);
            }
        }
    }

    @Override
    public void flatMap(Tuple2<String, Long> value, 
                        Collector<Tuple2<String, List<Tuple2<String, Long>>>> out) {
        Long inputValue = value.f1;
        // 超过阈值则进行记录
        if (inputValue >= threshold) {
            bufferedData.add(value);
        }
        // 超过指定次数则输出报警信息
        if (bufferedData.size() >= numberOfTimes) {
             // 顺便输出状态实例的hashcode
             out.collect(Tuple2.of(checkPointedState.hashCode() + "阈值警报!", bufferedData));
            bufferedData.clear();
        }
    }

    @Override
    public void snapshotState(FunctionSnapshotContext context) throws Exception {
        // 在进行快照时,将数据存储到checkPointedState
        checkPointedState.clear();
        for (Tuple2<String, Long> element : bufferedData) {
            checkPointedState.add(element);
        }
    }
}

调用自定义算子状态,这里需要将并行度设置为 1:

final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 开启检查点机制
env.enableCheckpointing(1000);
// 设置并行度为1
DataStreamSource<Tuple2<String, Long>> tuple2DataStreamSource = env.setParallelism(1).fromElements(
    Tuple2.of("a", 50L), Tuple2.of("a", 80L), Tuple2.of("a", 400L),
    Tuple2.of("a", 100L), Tuple2.of("a", 200L), Tuple2.of("a", 200L),
    Tuple2.of("b", 100L), Tuple2.of("b", 200L), Tuple2.of("b", 200L),
    Tuple2.of("b", 500L), Tuple2.of("b", 600L), Tuple2.of("b", 700L));
tuple2DataStreamSource
    .flatMap(new ThresholdWarning(100L, 3))
    .printToErr();
env.execute("Managed Keyed State");
}

此时输出如下:

Flink状态管理与检查点机制,Flink,flink,大数据,数据仓库

在上面的调用代码中,我们将程序的并行度设置为 1,可以看到三次输出中状态实例的 hashcode 全是一致的,证明它们都同一个状态实例。假设将并行度设置为 2,此时输出如下:Flink状态管理与检查点机制,Flink,flink,大数据,数据仓库

可以看到此时两次输出中状态实例的 hashcode 是不一致的,代表它们不是同一个状态实例,这也就是上文提到的,一个算子状态是与一个并发的算子实例所绑定的。同时这里只输出两次,是因为在并发处理的情况下,线程 1 可能拿到 5 个非正常值,线程 2 可能拿到 4 个非正常值,因为要大于 3 次才能输出,所以在这种情况下就会出现只输出两条记录的情况,所以需要将程序的并行度设置为 1。

3.检查点机制

3.1 CheckPoints

为了使 Flink 的状态具有良好的容错性,Flink 提供了检查点机制 (CheckPoints)  。通过检查点机制,Flink 定期在数据流上生成 checkpoint barrier ,当某个算子收到 barrier 时,即会基于当前状态生成一份快照,然后再将该 barrier 传递到下游算子,下游算子接收到该 barrier 后,也基于当前状态生成一份快照,依次传递直至到最后的 Sink 算子上。当出现异常后,Flink 就可以根据最近的一次的快照数据将所有算子恢复到先前的状态。

Flink状态管理与检查点机制,Flink,flink,大数据,数据仓库

3.2 开启检查点

默认情况下,检查点机制是关闭的,需要在程序中进行开启:

// 开启检查点机制,并指定状态检查点之间的时间间隔
env.enableCheckpointing(1000); 

// 其他可选配置如下:
// 设置语义
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
// 设置两个检查点之间的最小时间间隔
env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
// 设置执行Checkpoint操作时的超时时间
env.getCheckpointConfig().setCheckpointTimeout(60000);
// 设置最大并发执行的检查点的数量
env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
// 将检查点持久化到外部存储
env.getCheckpointConfig().enableExternalizedCheckpoints(
    ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
// 如果有更近的保存点时,是否将作业回退到该检查点
env.getCheckpointConfig().setPreferCheckpointForRecovery(true);

3.3 保存点机制

保存点机制 (Savepoints) 是检查点机制的一种特殊的实现,它允许你通过手工的方式来触发 Checkpoint,并将结果持久化存储到指定路径中,主要用于避免 Flink 集群在重启或升级时导致状态丢失。示例如下:

# 触发指定id的作业的Savepoint,并将结果存储到指定目录下
bin/flink savepoint :jobId [:targetDirectory]

4.状态后端

4.1 状态管理器分类

默认情况下,所有的状态都存储在 JVM 的堆内存中,在状态数据过多的情况下,这种方式很有可能导致内存溢出,因此 Flink 该提供了其它方式来存储状态数据,这些存储方式统一称为状态后端 (或状态管理器):

Flink状态管理与检查点机制,Flink,flink,大数据,数据仓库

主要有以下三种:

1. MemoryStateBackend

默认的方式,即基于 JVM 的堆内存进行存储,主要适用于本地开发和调试。

2. FsStateBackend

基于文件系统进行存储,可以是本地文件系统,也可以是 HDFS 等分布式文件系统。 需要注意而是虽然选择使用了 FsStateBackend ,但正在进行的数据仍然是存储在 TaskManager 的内存中的,只有在 checkpoint 时,才会将状态快照写入到指定文件系统上。

3. RocksDBStateBackend

RocksDBStateBackend 是 Flink 内置的第三方状态管理器,采用嵌入式的 key-value 型数据库 RocksDB 来存储正在进行的数据。等到 checkpoint 时,再将其中的数据持久化到指定的文件系统中,所以采用 RocksDBStateBackend 时也需要配置持久化存储的文件系统。之所以这样做是因为 RocksDB 作为嵌入式数据库安全性比较低,但比起全文件系统的方式,其读取速率更快;比起全内存的方式,其存储空间更大,因此它是一种比较均衡的方案。

4.2 配置方式

Flink 支持使用两种方式来配置后端管理器:

第一种方式:基于代码方式进行配置,只对当前作业生效:

// 配置 FsStateBackend
env.setStateBackend(new FsStateBackend("hdfs://namenode:40010/flink/checkpoints"));
// 配置 RocksDBStateBackend
env.setStateBackend(new RocksDBStateBackend("hdfs://namenode:40010/flink/checkpoints"));

配置 RocksDBStateBackend 时,需要额外导入下面的依赖:

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-statebackend-rocksdb_2.11</artifactId>
    <version>1.14.2</version>
</dependency>

第二种方式:基于 flink-conf.yaml 配置文件的方式进行配置,对所有部署在该集群上的作业都生效:文章来源地址https://www.toymoban.com/news/detail-723937.html

state.backend: filesystem
state.checkpoints.dir: hdfs://namenode:40010/flink/checkpoints

到了这里,关于Flink状态管理与检查点机制的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 怎么理解flink的异步检查点机制

    flink的checkpoint监控页面那里有两个指标Sync Duration 和Async Duration,一个是开始进行同步checkpoint所需的时间,一个是异步checkpoint过程所需的时间,你是否也有过疑惑,是否只是同步过程中的时间才会阻塞正常的数据处理,而异步checkpoint的时间不会影响正常的数据处理流程? 这

    2024年02月09日
    浏览(61)
  • 【大数据】Flink 架构(五):检查点 Checkpoint(看完即懂)

    《 Flink 架构 》系列(已完结),共包含以下 6 篇文章: Flink 架构(一):系统架构 Flink 架构(二):数据传输 Flink 架构(三):事件时间处理 Flink 架构(四):状态管理 Flink 架构(五):检查点 Checkpoint(看完即懂) Flink 架构(六):保存点 Savepoint 😊 如果您觉得这篇

    2024年02月19日
    浏览(47)
  • Flink 检查点配置

    开启自动保存快照 (默认:关闭) : 间隔调整 : 对性能的影响更小,就调大间隔时间 为了更好的容错性,就以调小间隔时间 检查点存储 (CheckpointStorage) : 持久化存储位置 JobManager 的堆内存 (JobManagerCheckpointStorage) : 默认 文件系统 (FileSystemCheckpointStorage) : 常用 , (HDFS , S3) Rocksdb 状

    2024年02月10日
    浏览(60)
  • Flink系列之:背压下的检查点

    通常情况下,对齐 Checkpoint 的时长主要受 Checkpointing 过程中的同步和异步两个部分的影响。 然而,当 Flink 作业正运行在严重的背压下时,Checkpoint 端到端延迟的主要影响因子将会是传递 Checkpoint Barrier 到 所有的算子/子任务的时间。这在 checkpointing process) 的概述中有说明原因

    2024年02月04日
    浏览(45)
  • 【Flink】Flink 记录一个 checkpoint 检查点 越来越大的问题

    Flink SQL checkpoint越来越大咋么办,从2个G,现在4个G了,增量同步的,窗口是1小时,watermark是6小时,按道理来说,数据量不应该越来越大啊? 在窗口内执行了count(distinct )这些操作。设置了状态的ttl。后端状态存储用的rocksdb。 状态如下 设置了增量的检查点 代码设置不一定有

    2024年02月10日
    浏览(50)
  • Flink任务失败,检查点失效:Exceeded checkpoint tolerable failure threshold.

    最近实时平台flink任务频繁失败,报检查点方面的错误,最近集群的hdfs也经常报警:运行状况不良,不知道是否和该情况有关,我的状态后端位置是hdfs,废话不多说,干货搞起来~ 日志中报错如下: 在报 Exceeded checkpoint tolerable failure threshold. 错误的之前,是先报的是 Checkpoi

    2024年02月07日
    浏览(84)
  • SPARK--cache(缓存)和checkpoint检查点机制

    rdd的特性 缓存和checkpoint 作用都是进行容错 rdd在计算是会有多个依赖,为了避免计算错误是从头开始计算,可以将中间* 依赖rdd进行缓存或checkpoint 缓存或checkpoint也叫作rdd的持久化 一般对某个计算特别复杂的rdd进行持久化 缓存使用 缓存是将数据存储在内存或者磁盘上,缓存

    2024年01月16日
    浏览(58)
  • Spark 检查点(checkpoint)

    Checkpointing可以将RDD从其依赖关系中抽出来,保存到可靠的存储系统(例如HDFS,S3等), 即它可以将数据和元数据保存到检查指向目录中。 因此,在程序发生崩溃的时候,Spark可以恢复此数据,并从停止的任何地方开始。 Checkpointing分为两类: 高可用checkpointing,容错性优先。这

    2024年04月27日
    浏览(43)
  • loadrunner入门教程(14)--检查点

    检查点函数原理:回放脚本时搜索特定的文本或者字符串,从而验证服务器相应的正确性;验证请求是否成功,可以添加检查点。以检查从服务器返回的内容是否正确。本任务针对脚本开发–检查点进行介绍 掌握基于loadrunner性能测试脚本开发——检查点 1.单击Design→Insert

    2024年02月05日
    浏览(66)
  • Spark基础学习笔记----RDD检查点与共享变量

    了解RDD容错机制 理解RDD检查点机制的特点与用处 理解共享变量的类别、特点与使用 当Spark集群中的某一个节点由于宕机导致数据丢失,则可以通过Spark中的RDD进行容错恢复已经丢失的数据。RDD提供了两种故障恢复的方式,分别是 血统(Lineage)方式 和 设置检查点(checkpoint)

    2024年02月06日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包