04 MIT线性代数-矩阵的LU分解 Factorization into A=LU

这篇具有很好参考价值的文章主要介绍了04 MIT线性代数-矩阵的LU分解 Factorization into A=LU。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目的: 从矩阵的角度理解高斯消元法, 完成LU分解得到A=LU

1.矩阵乘积的逆矩阵 Inverse of a product

04 MIT线性代数-矩阵的LU分解 Factorization into A=LU,线性代数,线性代数,矩阵

2.矩阵乘积的转置 Transpose of a product

04 MIT线性代数-矩阵的LU分解 Factorization into A=LU,线性代数,线性代数,矩阵

3.转置矩阵的逆矩阵 Inverse of a transpose

04 MIT线性代数-矩阵的LU分解 Factorization into A=LU,线性代数,线性代数,矩阵

4.矩阵的LU分解

04 MIT线性代数-矩阵的LU分解 Factorization into A=LU,线性代数,线性代数,矩阵

04 MIT线性代数-矩阵的LU分解 Factorization into A=LU,线性代数,线性代数,矩阵

04 MIT线性代数-矩阵的LU分解 Factorization into A=LU,线性代数,线性代数,矩阵

U为上三角阵(Upper triangular matrix), L为下三角阵(Lower triangular matrix), 通过分解得到对角阵D(diagonal matrix)

04 MIT线性代数-矩阵的LU分解 Factorization into A=LU,线性代数,线性代数,矩阵

4.1 三阶矩阵不需要换行进行消元的情况则有: (no row exchanges)

04 MIT线性代数-矩阵的LU分解 Factorization into A=LU,线性代数,线性代数,矩阵

设定一组消元矩阵,其中E31为单位阵I,其它两个消元矩阵如下:

04 MIT线性代数-矩阵的LU分解 Factorization into A=LU,线性代数,线性代数,矩阵

row3-5newrow2=row3-5(row2-2row1)=row3-5row2+10 row1

E(left of A) EA=U

4.2 inverses (reverse order)

右侧操作则不会有这种情况发生,运算顺序会发生变化

04 MIT线性代数-矩阵的LU分解 Factorization into A=LU,线性代数,线性代数,矩阵

04 MIT线性代数-矩阵的LU分解 Factorization into A=LU,线性代数,线性代数,矩阵

E(left of U) A=LU

if no row exchanges, multipliers go directly into L  没有多余的交叉项出现是LU分解要优于EA=U这种形式的原因之一

5. How many operations on n×n matrix A? 消元法所需运算量

04 MIT线性代数-矩阵的LU分解 Factorization into A=LU,线性代数,线性代数,矩阵

6. 置换矩阵Permutation Matrix

如果主元的位置出现了0,就需要进行“行交换”。我们可以通过左乘一个置换矩阵(Permutation Matrix)实现“行交换”的操作. 置换矩阵每一行或者每一列只有一个元素是1,其它都是0

04 MIT线性代数-矩阵的LU分解 Factorization into A=LU,线性代数,线性代数,矩阵

为了实现33矩阵的第一行与第二行的交换, 有6个置换矩阵

nxn矩阵存在着n!个置换矩阵

置换矩阵的逆矩阵

某阶的置换矩阵集合而言,置换矩阵的两两乘积仍在这个集合中,置换矩阵的逆矩阵也在此集合中。置换矩阵的逆矩阵即为它的转置 04 MIT线性代数-矩阵的LU分解 Factorization into A=LU,线性代数,线性代数,矩阵文章来源地址https://www.toymoban.com/news/detail-724043.html

到了这里,关于04 MIT线性代数-矩阵的LU分解 Factorization into A=LU的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • MIT线性代数笔记-第27讲-复数矩阵,快速傅里叶变换

    对于实矩阵而言,特征值为复数时,特征向量一定为复向量,由此引入对复向量的学习 求模长及内积 假定一个复向量 z ⃗ = [ z 1 z 2 ⋮ z n ] vec{z} = begin{bmatrix} z_1 \\\\ z_2 \\\\ vdots\\\\ z_n end{bmatrix} z = ​ z 1 ​ z 2 ​ ⋮ z n ​ ​ ​ ,其中 z 1 , z 2 , ⋯   , z n z_1 , z_2 , cdots , z_n z 1 ​

    2024年02月05日
    浏览(36)
  • MIT_线性代数笔记:第 26 讲 复矩阵;快速傅里叶变换

    实矩阵也可能有复特征值,因此无法避免在矩阵运算中碰到复数,本讲学习处理复数矩阵和复向量。 最重要的复矩阵是傅里叶矩阵,它用于傅里叶变换。而对于大数据处理快速傅里叶变换(FFT)显得更为重要,它将傅立叶变换的矩阵乘法中运算的次数从 n 2 n^2 n 2 次降至 n l

    2024年01月17日
    浏览(31)
  • 线性代数中的矩阵分解与稀疏处理

    线性代数是计算机科学、数学、物理等多个领域的基础知识之一,其中矩阵分解和稀疏处理是线性代数中非常重要的两个方面。矩阵分解是指将一个矩阵分解为多个较小的矩阵的过程,这有助于我们更好地理解和解决问题。稀疏处理是指处理那些主要由零组成的矩阵的方法,

    2024年04月15日
    浏览(36)
  • 线性代数 --- 矩阵的QR分解,A=QR

            首先先简单的回顾一下Gram-Schmidt正交化过程的核心思想。即,如何把一组线性无关的向量构造成一组标准正交向量,或者说,如何把一般的线性无关矩阵A变成标准正交矩阵Q。         给定一组线性无关的向量a,b,c,我们希望构造出一组相互垂直的单位向量q1,q2,q3。

    2024年02月08日
    浏览(29)
  • 【线性代数/机器学习】矩阵的奇异值与奇异值分解(SVD)

    我们知道,对于一个 n × n ntimes n n × n 的矩阵 A A A ,如果 A A A 有 n n n 个线性无关的特征向量,则 A A A 可以相似对角化,即存在可逆矩阵 P P P 使得 A = P Λ P − 1 A=PLambda P^{-1} A = P Λ P − 1 ,其中 Λ Lambda Λ 是 A A A 的特征值组成的对角阵。 P P P 的列实际上就是 A A A 的特征向

    2024年02月10日
    浏览(32)
  • 线性代数:为什么所有3x3对称矩阵构成的向量空间是6维的?(mit第11讲中的疑问)

    对应mit线性代数第11讲矩阵空间,秩1矩阵,小世界图第6-7分钟的讲解问题:3x3对称矩阵构成的向量空间为什么是6维的 看了一些资料,发现这个国外的大哥讲得清楚 https://math.stackexchange.com/questions/2813446/what-is-the-dimension-of-the-vector-space-consisting-of-all-3-by-3-symmetric-mat 转成中文后如

    2024年02月03日
    浏览(37)
  • MIT线性代数详细笔记(更新中)

    2022.10.15 ~ 2022.11. 立个flag,每天一到两刷。 行图像: 对于行图像,n=2,即两方程两未知数,两条直线的交点就是方程的解。 列图像 该方程的目的是什么?         目的是寻找正确的线性组合。上图红框部分就是列向量的线性组合。 x=1,y=2的线性组合可以得出b。而所有的

    2024年02月15日
    浏览(28)
  • MIT_线性代数笔记:复习二

    正交矩阵 Q,用矩阵形式描述正交性质。 投影矩阵 P,最小二乘法,在方程无解时求“最优解”。 Gram-Schmidt 正交化——从任意一组基得到标准正交基,策略是从向量 中减去投影到其它向量方向的分量。 行列式 det(A) 三个性质定义了行列式,可以推导出之后的性质 4~10。 行列

    2024年01月23日
    浏览(38)
  • MIT线性代数-方程组的几何解释

    假设有一个方程组 A X = B AX=B A X = B 表示如下 2 x − y = 0 (1) 2x-y=0tag{1} 2 x − y = 0 ( 1 ) − x + 2 y = 3 (2) -x+2y=3tag{2} − x + 2 y = 3 ( 2 ) 矩阵表示如下: [ 2 − 1 − 1 2 ] [ x y ] = [ 0 3 ] (3) begin{bmatrix}2-1\\\\\\\\-12end{bmatrix}begin{bmatrix}x\\\\\\\\yend{bmatrix}=begin{bmatrix}0\\\\\\\\3end{bmatrix}tag{3} ​ 2 − 1 ​

    2024年04月15日
    浏览(35)
  • 矩阵分解是计算机科学中的一个重要研究领域,涉及到向量空间理论、线性代数、密码学等领域。以下是100篇热门博客文

    作者:禅与计算机程序设计艺术 矩阵分解是计算机科学中的一个重要研究领域,涉及到向量空间理论、线性代数、密码学等领域。在机器学习和深度学习等领域中,矩阵分解被广泛应用。本文将介绍矩阵分解的相关原理、实现步骤以及应用示例。 2.1 基本概念解释 矩阵分解是

    2024年02月15日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包