STM32--PWR电源控制

这篇具有很好参考价值的文章主要介绍了STM32--PWR电源控制。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

PWR

STM32的PWR模块是其电源管理系统的核心部分,负责控制和管理芯片的供电和电源状态

电源

STM32的工作电压(VDD)为2.0~3.6V。通过内置的电压调节器提供所需的1.8V电源。
当主电源VDD掉电后,通过VBAT脚为实时时钟(RTC)和备份寄存器提供电源。
STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR

STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR
VDDA供电区域是为模拟电路提供电源的区域。VDDA通常由外部电源提供,通过电源管理单元(PWR)进行控制和管理。
VDDA的电压范围:2.4V~3.6V(具体取决于不同型号的芯片),并且必须在此范围内保持稳定和可靠的供电。
为了提高转换的精确度, ADC使用一个独立的电源供电,过滤和屏蔽来自印刷电路板上的毛刺干扰。
对于不同的引脚封装,所需的电源引脚也是不同的。(如图中的VREF)。
STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR

这部分是为数字电路提供的电源区域,也是最主要的电源区域。
Vdd的电压范围:1.8V~3.6V
供电区域包括输入输出接口的电路,待机电路(唤醒逻辑、看门狗)以及电压调节器。
对于我们外设电路,一般都为3.3V,当他连接到内电路时,会通过电压调节器调整到1.8V来链接CPU核心存储器和内置数字外设,此操作是为了能够减少电源消耗。
STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR
后备供电区域就是上一节为RTC和备份寄存器提供能源的区域。
主要作用是在主电源失效或断电时,提供持久的电源支持和数据保护。

RTC时钟链接处

电源管理器

电源管理器一般用于电源的监测和进行复位操作。

上电复位(POR)和掉电复位(PDR)

STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR
在上电复位(POR)和掉电复位(PDR)方面,PWR模块监测VDD/DDA是否低于设定的阈值,当电压低于设定的阈值时,系统保持在复位状态,以确保电路的正常运行。这种情况一般发生在芯片刚刚接通电源或电源恢复时。上电复位会将芯片的所有寄存器和内部状态初始化为默认值,使系统进入一个已知的、可靠的状态。
在图中我们会发现上电复位会有一些滞后时间,这是由于电源和芯片内部的复位电路之间的时间延迟引起的。当供电电压开始上升时,电源需要经过一个上升时间才能稳定到达复位阈值之以上,同时芯片内部的复位电路也需要一定时间来检测并响应供电电压的变化。这种供电电压上升和内部电路检测的时间延迟导致了上电复位的滞后

掉电复位在芯片的供电电压低于掉电复位阈值(PDR)以下时,系统会触发掉电复位,将芯片的所有寄存器和内部状态初始化为默认值。

可编程电压监测器(PVD)

STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR
STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR
下面是Vpvd可以选择监测电压范围
STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR
STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR
总的来说,监测电压范围为2.1V~2.9V;一旦有设置PVD检测,超过这个范围的,就会输出PVD信号。

低功耗模式

在系统或者电源复位后,微控制器会处于运行状态;在CPU不需要运行时,我们可以通过低功耗模式,以实现节能和延长电池寿命。低功耗模式会通过关闭或减少一些不必要的外设和时钟来降低系统功耗,同时又保持一些关键功能的运行。且对于关闭的一些外设,在需要运行的时候,要有手段来唤醒这些外设。
STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR
STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR
STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR
开启流程:
STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR

睡眠模式

STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR

停止模式

STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR

待机模式

STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR

睡眠模式工程

SWART串口链接入口

通过对串口的发送和接收数据工程进行验证。

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "Buzzer.h"
#include "Serial.h"
#include "OLED.h"
int main()
{
    uint8_t Rxdata;
	OLED_Init();
	Serial_Init();
    
    OLED_ShowString(1,1,"RxData:");
    
    while(1)
    {
        if(Serial_GetRxFlag()==1)
        {
            Rxdata=Serial_GetRxData();
            Serial_SendByte(Rxdata);
            OLED_ShowHexNum(1,8,Rxdata,2);
        }
        OLED_ShowString(2,1,"Running");
        Delay_ms(100);
        OLED_ShowString(2,1,"       ");
        Delay_ms(100);
        
        __WFI();
    }
    
}

当没有睡眠模式时,由于程序不断的跑动,Running会在屏幕上不停闪烁;通过睡眠模式,来使SWART串口非发送和接收状态,不会进行程序的跑动,只有在串口发送和接收时,才会从睡眠模式恢复过来,节省消耗;
STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR
WFI是等待中断;只要触发该指令,就会进入睡眠模式;通过接收数据的中断来唤醒。
在开启流程图还需要SLEEPDEEP和SLEEPONEXIT,由于PWR没有内置该模式函数,我们就从简入手;不开这两个相关寄存器也不影响操作;

停止模式

外部中断文章链接入口

通过对对射式红外传感器工程的触发,来验证停止模式。

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "Buzzer.h"
#include "LightSensor.h"
#include "OLED.h"
#include "CountSensor.h"
int main()
{
	OLED_Init();
    CountSensor_Init();
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR,ENABLE);
    OLED_ShowString(1,1,"Count:");
    while(1)
    {
   
        OLED_ShowNum(1,7,CountSensor_Get(),5);
        
        OLED_ShowString(2,1,"Running");
        Delay_ms(100);
        OLED_ShowString(2,1,"       ");
        Delay_ms(100);
        
        PWR_EnterSTOPMode(PWR_Regulator_ON,PWR_STOPEntry_WFI);
        SystemInit();
        
    }
}


与上一个工程相同的道理,利用闪烁来表示程序的不断进行,停止模式会使程序中断,只有触发外部中断时,才有唤醒电源;
STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR
这是库函数内置的停止模式,第一个参数是选择开启电压调节器低功耗和开启;第二个参数是选择唤醒事件指令或者是中断指令;
STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR
由于一个中断或唤醒事件导致退出停止模式时,HSI被选为系统时钟,唤醒后时钟频率变为8MHz,需要通过SystemInit()函数来初始化时钟频率。
STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR

待机模式

RTC时钟链接处

通过RTC闹钟唤醒和AWAUP的上升唤醒来验证待机模式;

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "MyRTC.h"

int main()
{
    Time time;
    time.year=2023;
    time.mon=1;
    time.mday=1;
    time.hour=23;
    time.min=59;
    time.sec=55;
    
	OLED_Init();
	MyRTC_Init(&time);
    
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR,ENABLE);
	
   // PWR_WakeUpPinCmd(ENABLE);
    
    MyRTC_SetTime(&time);
	OLED_ShowString(1, 1, "ALR :");
	OLED_ShowString(2, 1, "ALRF:");
	OLED_ShowString(3, 1, "CNT :");

	
    uint32_t Alarm=RTC_GetCounter()+10;
    RTC_SetAlarm(Alarm);
    OLED_ShowNum(1,6,Alarm,10);
    
	while (1)
	{
		MyRTC_ReadTime(&time);
		
		OLED_ShowNum(3, 6, RTC_GetCounter(), 10);
		OLED_ShowNum(2, 6, RTC_GetFlagStatus(RTC_FLAG_ALR), 1);
	
        OLED_ShowString(4,1,"Running");
        Delay_ms(100);
        OLED_ShowString(4,1,"       ");
        Delay_ms(100);
        
       // OLED_ShowString(4, 9, "STANDBY");
	//	Delay_ms(1000);
	//	OLED_ShowString(4, 9, "       ");
	//	Delay_ms(100);
        
       //   OLED_Clear();
        
        PWR_EnterSTANDBYMode();
        
    }
    
}

让闹钟值大于CNT十秒,当达到闹钟值时,就会让标志位置1,可以先观察标志位是否置换,然后再执行待机模式。
STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR
STM32--PWR电源控制,STM32,stm32,单片机,嵌入式硬件,PWR
下面的只要让一PA0(有WAUP功能)引脚接上正极,就能触发唤醒。文章来源地址https://www.toymoban.com/news/detail-724086.html

到了这里,关于STM32--PWR电源控制的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 单片机STM32看门狗详解(嵌入式学习)

    单片机STM32的看门狗(Watchdog)是一种硬件定时器,用于监控系统的运行状态并在出现故障或死锁时采取措施以恢复正常操作。看门狗的主要功能是定期检查系统是否正常运行,并在系统出现问题时触发复位操作。 STM32系列单片机通常配备了内置的看门狗定时器(通常称为独立

    2024年02月13日
    浏览(46)
  • 【单片机毕设选题】stm32实现车牌识别系统 -物联网 嵌入式 单片机

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月20日
    浏览(44)
  • 单片机项目分享 stm32机器视觉的人脸识别系统 - 单片机 物联网 嵌入式

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年01月22日
    浏览(59)
  • stm32毕设分享 stm32智能运动计步系统 - 物联网 嵌入式 单片机

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月20日
    浏览(49)
  • 单片机项目分享 基于stm32的便携用电功率统计系统 -物联网 嵌入式 单片机

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月19日
    浏览(76)
  • 嵌入式STM32 单片机 GPIO 的工作原理详解

    STM32的 GPIO 介绍 GPIO 是通用输入/输出端口的简称,是 STM32 可控制的引脚。GPIO 的引脚与外部硬件设备连接,可实现与外部通讯、控制外部硬件或者采集外部硬件数据的功能。 以 STM32F103ZET6 芯片为例子,该芯片共有 144 脚芯片,包括7个通用目的的输入/输出口(GPIO)组,分别为

    2024年02月20日
    浏览(40)
  • stm32毕设分享 基于stm32的便携用电功率统计系统 -物联网 嵌入式 单片机

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月22日
    浏览(45)
  • stm32毕设分享 stm32单片机的远程WIFI密码锁 - 物联网 嵌入式

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月20日
    浏览(38)
  • 单片机项目分享 单片机自动写字机器人设计与实现 - 物联网 嵌入式 stm32

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月21日
    浏览(72)
  • 【单片机毕设选题】 stm32智能运动计步系统 - 物联网 嵌入式 单片机

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月20日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包