【人工智能的数学基础】函数的光滑化(Smoothing)

这篇具有很好参考价值的文章主要介绍了【人工智能的数学基础】函数的光滑化(Smoothing)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【人工智能的数学基础】函数的光滑化(Smoothing)

文章来源地址https://www.toymoban.com/news/detail-724137.html

到了这里,关于【人工智能的数学基础】函数的光滑化(Smoothing)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能中的数学基础

    2023年09月11日
    浏览(57)
  • 人工智能之数学基础【牛顿法】

    简述 牛顿法常用来求解无约束非线性规划问题,它利用目标函数的二次泰勒展开式构造搜索方向。 无约束非线性规划问题 : m i n f ( x ) , x ∈ R n min f(x),quad x in R^n min f ( x ) , x ∈ R n 。如果目标函数 f ( x ) f(x) f ( x ) 在 R n R^n R n 上具有 连续的二阶偏导数 ,其中 Hessian矩阵正定

    2024年02月20日
    浏览(43)
  • 人工智能之数学基础【最小二乘法】

    原理 最小二乘法由勒让德(A.M.Legendre)于1805年在其著作《计算彗星轨道的新方法》中提出,主要思想是最小化误差二次方和寻找数据的最佳匹配函数,利用最小二乘法求解未知参数,使得理论值与观测值之差(即误差,或称为残差)的二次方和达到最小,即: E = ∑ i = 1 n

    2024年02月21日
    浏览(45)
  • 人工智能之数学基础【共轭梯度法】

    简述 共轭梯度法是利用目标函数的梯度逐步产生 共轭方向 并将其作为搜索方向的方法。 共轭梯度法是针对二次函数 f ( x ) = 1 2 x T Q x + b T x + c , x ∈ R n f(x)=frac{1}{2}x^TQx+b^Tx+c,x in R^n f ( x ) = 2 1 ​ x T Q x + b T x + c , x ∈ R n 的 无约束优化问题 。此方法具有 存储变量少 和 收敛速

    2024年02月20日
    浏览(47)
  • 【人工智能的数学基础】泰勒公式(Taylor Formula)

    Taylor Formula. 本文目录: 泰勒公式 Taylor Formula 余项 Remainder 泰勒公式的应用:Hard-Sigmoid与Hard-Tanh 泰勒公式(Taylor Formula) 是将一个复杂函数用一个 多

    2024年02月08日
    浏览(48)
  • 【人工智能】AI写作能力大比拼:《人工智能的数学基础》写下这本书的目录。

    《人工智能的数学基础》 第一章 人工智能与数学基础 1.1 人工智能简介 1.2 数学在人工智能中的作用 1.3 本书内容概述 第二章 线性代数基础 2.1 向量与矩阵 2.2 行列式与矩阵计算 2.3 线性方程组 2.4 矩阵分解与特征值分析 第三章 微积分基础 3.1 导数与微分 3.2 积分学基础 3.3 常

    2024年02月09日
    浏览(60)
  • 【人工智能的数学基础】二进制乘法的Mitchell近似

    使用Mitchell近似构造加法神经网络. paper:Deep Neural Network Training without Multiplications arXiv:link 本文通过 Mitchell 近似算法将乘法运算转变为加法运算,从而降低了神经网络中的乘法的运算量。 Mitchell 近似是一种在二进制下近似的 快速对数 和 指数 计算方法。对于一个十进制的非

    2024年02月08日
    浏览(43)
  • 【人工智能的数学基础】积分概率度量(Integral Probability Metric)

    Integral Probability Metric. 积分概率度量( integral probability metrics, IPM )用于衡量两个概率分布

    2024年02月07日
    浏览(43)
  • 【人工智能的数学基础】使用Mitchell近似构造加法神经网络

    使用Mitchell近似构造加法神经网络. paper:Deep Neural Network Training without Multiplications arXiv:link 本文通过 Mitchell 近似算法将乘法运算转变为加法运算,从而降低了神经网络中的乘法的运算量。 Mitchell 近似是一种在二进制下近似的 快速对数 和 指数 计算方法。对于一个十进制的非

    2024年02月07日
    浏览(64)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包