时间复杂度为 O(n^2) 的排序算法

这篇具有很好参考价值的文章主要介绍了时间复杂度为 O(n^2) 的排序算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

大家好,我是 方圆。对于小规模数据,我们可以选用时间复杂度为 O(n2) 的排序算法,因为时间复杂度并不代表实际代码的执行时间,而且它也省去了低阶、系数和常数,仅代表的增长趋势,所以在小规模数据情况下, O(n2) 的排序算法可能会比 O(nlogn) 的排序算法执行效率高。不过随着数据规模增大, O(nlogn) 的排序算法是不二选择。本篇我们主要对 O(n2) 的排序算法进行介绍,在介绍之前,我们先了解一下算法特性:

  • 算法特性:

    • 稳定性:经排序后,若等值元素之间的相对位置不变则为稳定排序算法,否则为不稳定排序算法

    • 原地排序:是否借助额外辅助空间

    • 自适应性: 自适应性排序受输入数据的影响,即最佳/平均/最差时间复杂度不等,而非自适应排序时间复杂度恒定

本篇我们将着重介绍插入排序,选择排序和冒泡排序了解即可。

插入排序

插入排序的工作方式像 整理手中的扑克牌一样,即不断地将每一张牌插入到其他已经有序的牌中适当的位置。

插入排序的当前索引元素左侧的所有元素都是有序的:若当前索引为 i,则 [0, i - 1] 区间内的元素始终有序,这种性质被称为 循环不变式,即在第一次迭代、迭代过程中和迭代结束时,这种性质始终保持不变。

不过,这些有序元素的索引位置暂时不能确定,因为它们可能需要为更小的元素腾出空间而向右移动。插入排序的代码实现如下:

    private void sort(int[] nums) {
        for (int i = 1; i < nums.length; i++) {
            int base = nums[i];

            int j = i - 1;
            while (j >= 0 && nums[j] > base) {
                nums[j + 1] = nums[j--];
            }
            nums[j + 1] = base;
        }
    }

它的实现逻辑是取未排序区间中的某个元素为基准数 base,将 base 与其左侧已排序区间元素依次比较大小,并"插入"到正确位置。插入排序对 部分有序(数组中每个元素距离它的最终位置都不远或数组中只有几个元素的位置不正确等情况)的数组排序效率很高。事实上,当逆序很少或数据量不大(n2和nlogn比较接近)时,插入排序可能比其他任何排序算法都要快,这也是一些编程语言的内置排序算法在针对小数据量数据排序时选择使用插入排序的原因。

算法特性:

  • 空间复杂度:O(1)

  • 原地排序

  • 稳定排序

  • 自适应排序:当数组为升序时,时间复杂度为 O(n);当数组为降序时,时间复杂度为 O(n2)

希尔排序

插入排序对于大规模乱序数组排序很慢,因为它只会交换相邻的元素,所以元素只能一步步地从一端移动到另一端,如果最小的元素恰好在数组的最右端,要将它移动到正确的位置需要移动 N - 1 次。

希尔排序是基于插入排序改进的排序算法,它可以交换不相邻的元素以对数组的局部进行排序,并最终用插入排序将局部有序的数组排序。它的思想是使数组中间隔为 h 的元素有序(h 有序数组),如下图为间隔为 4 的有序数组:

时间复杂度为 O(n^2) 的排序算法,排序算法,算法,数据结构

排序之初 h 较大,这样我们能将较小的元素尽可能移动到靠近左端的位置,为实现更小的 h 有序创造便利,最后一次循环时 h 为 1,便是我们熟悉的插入排序。这就是希尔排序的过程,代码实现如下:

    private void sort(int[] nums) {
        int N = nums.length;
        int h = 1;
        while (h < N / 3) {
            h = 3 * h + 1;
        }

        while (h >= 1) {
            for (int i = h; i < N; i++) {
                int base = nums[i];

                int j = i - h;
                while (j >= 0 && nums[j] > base) {
                    nums[j + h] = nums[j];
                    j -= h;
                }
                nums[j + h] = base;
            }

            h /= 3;
        }
    }

希尔排序更高效的原因是它权衡了子数组的规模和有序性,它也可以用于大型数组。排序之初,各个子数组都很短,排序之后子数组都是部分有序的,这两种情况都很适合插入排序。


选择排序

选择排序的实现非常简单:每次选择未排序数组中的最小值,将其放到已排序区间的末尾,代码实现如下:

    private void sort(int[] nums) {
        for (int i = 0; i < nums.length; i++) {
            int min = i;
            for (int j = i + 1; j < nums.length; j++) {
                if (nums[j] < nums[min]) {
                    min = j;
                }
            }
            swap(nums, i, min);
        }
    }

    private void swap(int[] nums, int i, int j) {
        int temp = nums[i];
        nums[i] = nums[j];
        nums[j] = temp;
    }

算法特性:

  • 空间复杂度:O(1)

  • 原地排序

  • 非稳定排序:会改变等值元素之间的相对位置

  • 非自适应排序:最好/平均/最坏时间复杂度均为 O(n2)

冒泡排序

冒泡排序通过 连续地比较与交换相邻元素实现排序,每轮循环会将未被排序区间内的最大值移动到数组的最右端,这个过程就像是气泡从底部升到顶部一样,代码实现如下:

    public void sort(int[] nums) {
        for (int i = nums.length - 1; i > 0; i--) {
            // 没有发生元素交换的标志位
            boolean flag = true;
            for (int j = 0; j < i; j++) {
                if (nums[j] > nums[j + 1]) {
                    swap(nums, j, j + 1);
                    flag = false;
                }
            }

            if (flag) {
                break;
            }
        }
    }

    private void swap(int[] nums, int i, int j) {
        int temp = nums[i];
        nums[i] = nums[j];
        nums[j] = temp;
    }

算法特性:

  • 空间复杂度:O(1)

  • 原地排序

  • 稳定排序

  • 自适应排序:经过优化后最佳时间复杂度为 O(n)


巨人的肩膀

  • 《算法导论 第三版》第 2.1 章

  • 《算法 第四版》第 2.1 章

  • 《Hello 算法》第 11 章

  • 排序算法-希尔排序文章来源地址https://www.toymoban.com/news/detail-724185.html

到了这里,关于时间复杂度为 O(n^2) 的排序算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构与算法-时间复杂度与空间复杂度

    数据结构是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。 算法就是定义良好的计算过程,他取一个或一组的值为输入,并产生一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果。 算法在

    2024年02月07日
    浏览(46)
  • 数据结构--算法的时间复杂度和空间复杂度

    算法效率是指 算法在计算机上运行时所消耗的时间和资源 。这是衡量算法执行速度和资源利用情况的重要指标。 例子: 这是一个斐波那契函数,用的是递归的计算方法,每次创建函数就会在栈区开辟一块空间,递归次数越多,开辟空间越多; 所以, 代码的简洁说明不了算

    2024年02月15日
    浏览(43)
  • 【数据结构与算法】1.时间复杂度和空间复杂度

    📚博客主页:爱敲代码的小杨. ✨专栏:《Java SE语法》 ❤️感谢大家点赞👍🏻收藏⭐评论✍🏻,您的三连就是我持续更新的动力❤️ 🙏小杨水平有限,欢迎各位大佬指点,相互学习进步! 算法效率分为两种:第一种是时间效率;第二种是空间效率。时间效率又称为时间

    2024年01月20日
    浏览(49)
  • 数据结构 | 算法的时间复杂度和空间复杂度【详解】

    数据结构(Data Structure)是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。 算法(Algorithm):就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转

    2024年02月08日
    浏览(50)
  • 【数据结构与算法篇】时间复杂度与空间复杂度

       目录 一、数据结构和算法 1.什么是数据结构?  2.什么是算法? 3.数据结构和算法的重要性 二、算法的时间复杂度和空间复杂度 1.算法效率 2.算法的复杂度 3.复杂度在校招中的考察 4.时间复杂度 5.空间复杂度  6.常见复杂度对比 7.复杂度的OJ练习   👻内容专栏:《数据结

    2023年04月24日
    浏览(60)
  • 学习数据结构:算法的时间复杂度和空间复杂度

    衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。 时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。 算法的时间复杂度 算法中的基本操作的执行次数,为算法的时间复杂度。 算法的

    2024年04月11日
    浏览(40)
  • 【数据结构与算法篇】之时间复杂度与空间复杂度

    ❤️博客主页: 小镇敲码人 🍏 欢迎关注:👍点赞 👂🏽留言 😍收藏 🌞友友们暑假快乐,好久不见呀!!!💖💖💖 🍉 有人曾经问过我这样一个问题,“人终其一身,执着追求的东西究竟是什么?”我是这样回答的,”我们终其一生都在寻找着那个和我们灵魂极其契合

    2024年02月12日
    浏览(48)
  • 【数据结构初阶】算法的时间复杂度和空间复杂度

    1.1 如何衡量一个算法的好坏 如何衡量一个算法的好坏呢? 比如对于以下斐波那契数列: 斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢? 1.2 算法的复杂度 算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此

    2024年02月08日
    浏览(69)
  • 从头开始:数据结构和算法入门(时间复杂度、空间复杂度)

        目录 文章目录 前言 1.算法效率 1.1 如何衡量一个算法的好坏 1.2 算法的复杂度 2.时间复杂度  2.1 时间复杂度的概念 2.2 大O的渐进表示法 2.3常见时间复杂度计算 3.空间复杂度 4.常见复杂度对比 总结 前言         C语言的学习篇已经结束,今天开启新的篇章——数据结构

    2024年02月14日
    浏览(49)
  • 数据结构学习之路--算法的时间复杂度与空间复杂度(精讲)

         嗨嗨大家!本期带来的内容是:算法的时间复杂度与空间复杂度。 目录 前言 一、算法效率 算法效率的衡量标准 二、时间复杂度 1 时间复杂度的定义 2 求解时间复杂度的步骤 2.1 找出算法中的基本语句:  2.2计算基本语句执行次数的数量级: 2.3大O阶的渐进表示法:

    2024年04月09日
    浏览(58)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包