PostgreSQL基于Patroni方案的高可用启动流程分析

这篇具有很好参考价值的文章主要介绍了PostgreSQL基于Patroni方案的高可用启动流程分析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

什么是Patroni
在很多生产环境中,分布式数据库以高可用性、数据分布性、负载均衡等特性,被用户广泛应用。而作为高可用数据库的解决方案——Patroni,是专门为PostgreSQL数据库设计的,一款以Python语言实现的高可用架构模板。该架构模板,旨在通过外部共享存储软件(kubernetes、etcd、etcd3、zookeeper、aws等),实现 PostgreSQL 集群的自动故障恢复、自动故障转移、自动备份等能力。
主要特点:
1.自动故障检测和恢复:Patroni 监视 PostgreSQL 集群的健康状态,一旦检测到主节点故障,它将自动执行故障恢复操作,将其中一个从节点晋升为主节点。
2.自动故障转移:一旦 Patroni 定义了新的主节点,它将协调所有从节点和客户端,以确保它们正确地切换到新的主节点,从而实现快速、无缝的故障转移。
3.一致性和数据完整性:Patroni 高度关注数据一致性和完整性。在故障切换过程中,它会确保在新主节点接管之前,数据不会丢失或受损。
4.外部共享配置存储:Patroni 使用外部键值存储(如 ZooKeeper、etcd 或 Consul)来存储配置和集群状态信息。这确保了配置的一致性和可访问性,并支持多个 Patroni 实例之间的协作。
5.支持多种云环境和物理硬件:Patroni 不仅可以在云环境中运行,还可以部署在物理硬件上,提供了广泛的部署选项。
Patroni架构解析

●DCS(Distributed Configuration Store ):是指分布式配置信息的存储位置,可支持kubernetes、etcd、etcd3、zookeeper、aws等存储媒介,由Patroni进行分布式配置信息的读写。
●核心Patroni:负责将分布式配置信息写入DCS中,并设置PostgreSQL节点的角色以及PostgreSQL配置信息,管理PostgreSQL的生命周期。
●PostgreSQL节点:各PostgreSQL节点,根据Patroni设置的PostgreSQL配置信息,生成主从关系链,以流复制的方式进行数据同步,最终生成一个PostgreSQL集群。
Patroni高可用源码分析
Patroni高可用启动流程

流程说明:
●加载集群信息,通过DCS支持的API接口,获取集群信息,主要内容如下:
○config:记录pg集群ID以及配置信息(包括pg参数信息、一些超时时间配置等),用于集群校验、节点重建等;
○leader:记录主节点选举时间、心跳时间、选举周期、最新的lsn等,用于主节点完成竞争后的信息记录;
○sync: 记录主节点和同步节点信息,由主节点记录,用于主从切换、故障转移的同步节点校验;
○failover: 记录最后一次故障转移的时间。
●集群状态检测,主要检测集群配置信息的内容校验,当前集群的整体状态及节点状态,判断通过什么方式来启动PostgreSQL;
●启动PostgreSQL,用于初始化PostgreSQL目录,根据集群信息设置相应的PostgreSQL配置信息,并启动;
●生成PostgreSQL集群,指将完成启动的PostgreSQL节点,通过设置主从角色,关联不同角色的PostgreSQL节点,最终生成完整的集群。
Patroni高可用启动流程分析
加载集群信息
加载集群信息,是高可用流程启动的第一步,也是生成PostgreSQL集群的最关键信息。

第一步,记载集群信息

try:
    self.load_cluster_from_dcs()
    self.state_handler.reset_cluster_info_state(self.cluster, self.patroni.nofailover)
except Exception:
    self.state_handler.reset_cluster_info_state(None, self.patroni.nofailover)
    raise

通过DCS接口加载集群信息

def load_cluster_from_dcs(self):
    cluster = self.dcs.get_cluster()
# We want to keep the state of cluster when it was healthy
if not cluster.is_unlocked() or not self.old_cluster:
    self.old_cluster = cluster
self.cluster = cluster

if not self.has_lock(False):
    self.set_is_leader(False)

self._leader_timeline = None if cluster.is_unlocked() else cluster.leader.timeline

集群接口

def get_cluster(self, force=False):
    if force:
        self._bypass_caches()
    try:
        cluster = self._load_cluster()
    except Exception:
        self.reset_cluster()
        raise
self._last_seen = int(time.time())

with self._cluster_thread_lock:
    self._cluster = cluster
    self._cluster_valid_till = time.time() + self.ttl
    return cluster
@abc.abstractmethod
def _load_cluster(self):
    """Internally this method should build  `Cluster` object which
       represents current state and topology of the cluster in DCS.
       this method supposed to be called only by `get_cluster` method.
   raise `~DCSError` in case of communication or other problems with DCS.
   If the current node was running as a master and exception raised,
   instance would be demoted."""

以Kubernetes作为DCS为例

def _load_cluster(self):
    stop_time = time.time() + self._retry.deadline
    self._api.refresh_api_servers_cache()
    try:
        with self._condition:
            self._wait_caches(stop_time)
        members = [self.member(pod) for pod in self._pods.copy().values()]
        nodes = self._kinds.copy()

    config = nodes.get(self.config_path)
    metadata = config and config.metadata
    annotations = metadata and metadata.annotations or {}

    # get initialize flag
    initialize = annotations.get(self._INITIALIZE)

    # get global dynamic configuration
    config = ClusterConfig.from_node(metadata and metadata.resource_version,
                                     annotations.get(self._CONFIG) or '{}',
                                     metadata.resource_version if self._CONFIG in annotations else 0)

    # get timeline history
    history = TimelineHistory.from_node(metadata and metadata.resource_version,
                                        annotations.get(self._HISTORY) or '[]')

    leader = nodes.get(self.leader_path)
    metadata = leader and leader.metadata
    self._leader_resource_version = metadata.resource_version if metadata else None
    annotations = metadata and metadata.annotations or {}

    # get last known leader lsn
    last_lsn = annotations.get(self._OPTIME)
    try:
        last_lsn = 0 if last_lsn is None else int(last_lsn)
    except Exception:
        last_lsn = 0

    # get permanent slots state (confirmed_flush_lsn)
    slots = annotations.get('slots')
    try:
        slots = slots and json.loads(slots)
    except Exception:
        slots = None

    # get leader
    leader_record = {n: annotations.get(n) for n in (self._LEADER, 'acquireTime',
                     'ttl', 'renewTime', 'transitions') if n in annotations}
    if (leader_record or self._leader_observed_record) and leader_record != self._leader_observed_record:
        self._leader_observed_record = leader_record
        self._leader_observed_time = time.time()

    leader = leader_record.get(self._LEADER)
    try:
        ttl = int(leader_record.get('ttl')) or self._ttl
    except (TypeError, ValueError):
        ttl = self._ttl

    if not metadata or not self._leader_observed_time or self._leader_observed_time + ttl < time.time():
        leader = None

    if metadata:
        member = Member(-1, leader, None, {})
        member = ([m for m in members if m.name == leader] or [member])[0]
        leader = Leader(metadata.resource_version, None, member)

    # failover key
    failover = nodes.get(self.failover_path)
    metadata = failover and failover.metadata
    failover = Failover.from_node(metadata and metadata.resource_version,
                                  metadata and (metadata.annotations or {}).copy())

    # get synchronization state
    sync = nodes.get(self.sync_path)
    metadata = sync and sync.metadata
    sync = SyncState.from_node(metadata and metadata.resource_version,  metadata and metadata.annotations)

    return Cluster(initialize, config, leader, last_lsn, members, failover, sync, history, slots)
except Exception:
    logger.exception('get_cluster')
    raise KubernetesError('Kubernetes API is not responding properly')

上述集群信息中,主要以xxx-config、xxx-leader、xxx-failover、xxx-sync作为配置信息,具体内容如下:
●xxx-config

% kubectl get cm pg142-1013-postgresql-config -oyaml
apiVersion: v1
kind: ConfigMap
metadata:
  annotations:
    config: '{"loop_wait":10,"maximum_lag_on_failover":33554432,"postgresql":{"parameters":{"archive_command":"/bin/true","archive_mode":"on","archive_timeout":"1800s","autovacuum":"on","autovacuum_analyze_scale_factor":0.02,"autovacuum_max_workers":"3","autovacuum_naptime":"5min","autovacuum_vacuum_cost_delay":"2ms","autovacuum_vacuum_cost_limit":"-1","autovacuum_vacuum_scale_factor":0.05,"autovacuum_work_mem":"128MB","backend_flush_after":"0","bgwriter_delay":"200ms","bgwriter_flush_after":"256","bgwriter_lru_maxpages":"100","bgwriter_lru_multiplier":"2","checkpoint_completion_target":"0.9","checkpoint_flush_after":"256kB","checkpoint_timeout":"5min","commit_delay":"0","constraint_exclusion":"partition","datestyle":"iso,
      mdy","deadlock_timeout":"1s","default_text_search_config":"pg_catalog.english","dynamic_shared_memory_type":"posix","effective_cache_size":"32768","fsync":"on","full_page_writes":"on","hot_standby":"on","hot_standby_feedback":"off","huge_pages":"off","idle_in_transaction_session_timeout":"600000","lc_messages":"en_US.UTF-8","lc_monetary":"en_US.UTF-8","lc_numeric":"en_US.UTF-8","lc_time":"en_US.UTF-8","listen_addresses":"*","log_autovacuum_min_duration":"0","log_checkpoints":"on","log_connections":"off","log_disconnections":"off","log_error_verbosity":"default","log_line_prefix":"%t
      [%p]: [%l-1] %c %x %d %u %a %h","log_lock_waits":"on","log_min_duration_statement":"500","log_rotation_size":"0","log_statement":"none","log_temp_files":0,"log_timezone":"Asia/Shanghai","maintenance_work_mem":"32768","max_connections":"170","max_parallel_maintenance_workers":"2","max_parallel_workers":"2","max_parallel_workers_per_gather":"2","max_replication_slots":"10","max_standby_archive_delay":"30s","max_standby_streaming_delay":"30s","max_wal_senders":"10","max_wal_size":"2048","max_worker_processes":"8","old_snapshot_threshold":"-1","pg_stat_statements.max":"10000","pg_stat_statements.save":"on","pg_stat_statements.track":"all","pgaudit.log":"NONE","pgaudit.log_catalog":"on","pgaudit.log_client":"off","pgaudit.log_level":"log","pgaudit.log_parameter":"off","pgaudit.log_relation":"off","pgaudit.log_rows":"off","pgaudit.log_statement":"on","pgaudit.log_statement_once":"off","pgaudit.role":"","random_page_cost":"4","restart_after_crash":"on","synchronous_commit":"on","tcp_keepalives_count":"0","tcp_keepalives_idle":"900","tcp_keepalives_interval":"100","temp_buffers":"8MB","timezone":"Asia/Shanghai","track_activity_query_size":"1kB","track_functions":"all","track_io_timing":"off","unix_socket_directories":"/var/run/postgresql","vacuum_cost_delay":"0ms","vacuum_cost_limit":"200","wal_buffers":"2048","wal_compression":"on","wal_keep_segments":"128","wal_keep_size":"2048MB","wal_level":"replica","wal_log_hints":"on","wal_receiver_status_interval":"10s","wal_sender_timeout":"1min","wal_writer_delay":"200ms","wal_writer_flush_after":"1MB","work_mem":"4MB"},"use_pg_rewind":true,"use_slots":true},"retry_timeout":10,"synchronous_mode":true,"ttl":30}'
    initialize: "7289263672843878470"
  creationTimestamp: "2023-10-13T02:25:51Z"
  labels:
    application: spilo
    cluster-name: pg142-1013-postgresql
  name: pg142-1013-postgresql-config
  namespace: default
  resourceVersion: "22858249"
  uid: dfa64d28-e939-4bdd-8db1-a3485fa09637

上述例子中,下有和2个参数,
1.定义集群的整体配置信息,这里包含了PostgreSQL配置参数以及集群参数(选举等待时间、允许的最大WAL延迟量、是否开启同步模式等)等;
2.定义了集群的ID,该值对应pg_controldata命令内的值,因此,所有集群内的PostgreSQL节点有相同的sys_id。

root@pg142-1013-postgresql-1:/home/postgres# pg_controldata | grep "Database system identifier"
Database system identifier:           7289263672843878470
●xxx-leader
% kubectl get cm pg142-1013-postgresql-leader -oyaml
apiVersion: v1
kind: ConfigMap
metadata:
  annotations:
    acquireTime: "2023-10-13T02:26:06.973552+00:00"
    leader: pg142-1013-postgresql-0
    optime: "67109192"
    renewTime: "2023-10-16T07:02:57.418940+00:00"
    transitions: "0"
    ttl: "30"
  creationTimestamp: "2023-10-13T02:26:07Z"
  labels:
    application: spilo
    cluster-name: pg142-1013-postgresql
  name: pg142-1013-postgresql-leader
  namespace: default
  resourceVersion: "23286847"
  uid: cb235c85-6a21-454d-8320-222205eaa77f

上述下,各参数含义:
1.acquireTime:获取集群leader锁时间;
2.leader:集群leader锁的拥有者,这里表示某个PostgreSQL节点名称;
3.optime:集群leader的最新LSN的十进制数,这里;
4.renewTime:集群leader锁的拥有者心跳时间,心跳周期与xxx-config中的对应;
5.transitions:集群leader锁占用次数,一般发生在主从切换或故障转移场景,依次累加;
6.ttl:故障转移前的选举时间,即超过TTL时间下,没有获取到renewTime值更新,便触发选举,由新的节点占用leader锁。
●xxx-sync

% kubectl get cm pg142-1013-postgresql-sync -oyaml
apiVersion: v1
kind: ConfigMap
metadata:
  annotations:
    leader: pg142-1013-postgresql-1
    sync_standby: pg142-1013-postgresql-0
  creationTimestamp: "2023-10-16T06:54:39Z"
  labels:
    application: spilo
    cluster-name: pg142-1013-postgresql
  name: pg142-1013-postgresql-sync
  namespace: default
  resourceVersion: "23288352"
  uid: 1c46e63b-8b90-4fc6-9596-8e2f71fba2ab

上述内容记录了2个信息:
1.leader:显示leader节点的名称;
2.sync_standby:显示同步节点的名称,多个同步节点以逗号分隔。

●xxx-failover


% kubectl get cm pg142-1013-postgresql-failover -oyaml
apiVersion: v1
kind: ConfigMap
metadata:
  creationTimestamp: "2023-10-16T07:16:03Z"
  labels:
    application: spilo
    cluster-name: pg142-1013-postgresql
  managedFields:
  - apiVersion: v1
    fieldsType: FieldsV1
    fieldsV1:
      f:metadata:
        f:labels:
          .: {}
          f:application: {}
          f:cluster-name: {}
    manager: Patroni
    operation: Update
    time: "2023-10-16T07:36:56Z"
  name: pg142-1013-postgresql-failover
  namespace: default
  resourceVersion: "23290596"
  uid: 72d50c58-bc65-4b77-8870-93d0b8f8b7a2
上述内容,主要记录最后一次故障转移发生的时间。
集群状态检测
  if self.is_paused():
      self.watchdog.disable()
      self._was_paused = True
  else:
      if self._was_paused:
          self.state_handler.schedule_sanity_checks_after_pause()
      self._was_paused = False
  
  if not self.cluster.has_member(self.state_handler.name):
      self.touch_member()
  
  # cluster has leader key but not initialize key
  if not (self.cluster.is_unlocked() or self.sysid_valid(self.cluster.initialize)) and self.has_lock():
      self.dcs.initialize(create_new=(self.cluster.initialize is None), sysid=self.state_handler.sysid)
  
  if not (self.cluster.is_unlocked() or self.cluster.config and self.cluster.config.data) and self.has_lock():
      self.dcs.set_config_value(json.dumps(self.patroni.config.dynamic_configuration, separators=(',', ':')))
      self.cluster = self.dcs.get_cluster()
  
  if self._async_executor.busy:
      return self.handle_long_action_in_progress()
  
  msg = self.handle_starting_instance()
  if msg is not None:
      return msg
  
  # we've got here, so any async action has finished.
  if self.state_handler.bootstrapping:
      return self.post_bootstrap()
  
  if self.recovering:
      self.recovering = False
  
  if not self._rewind.is_needed:
      # Check if we tried to recover from postgres crash and failed
      msg = self.post_recover()
      if msg is not None:
          return msg

  # Reset some states after postgres successfully started up
  self._crash_recovery_executed = False
  if self._rewind.executed and not self._rewind.failed:
      self._rewind.reset_state()

  # The Raft cluster without a quorum takes a bit of time to stabilize.
  # Therefore we want to postpone the leader race if we just started up.
  if self.cluster.is_unlocked() and self.dcs.__class__.__name__ == 'Raft':
      return 'started as a secondary'

检测集群是否暂停
集群暂停,是指集群中的PostgreSQL节点不由Patroni管理,当集群异常时,不再出发故障转移等措施。
集群暂停一般由用户主动出发,可以用在单个PostgreSQL节点的维护上,触发方式:

root@pg142-1013-postgresql-0:/home/postgres# patronictl list
+ Cluster: pg142-1013-postgresql (7289263672843878470) ---+---------+----+-----------+
| Member                  | Host           | Role         | State   | TL | Lag in MB |
+-------------------------+----------------+--------------+---------+----+-----------+
| pg142-1013-postgresql-0 | 10.244.117.143 | Leader       | running |  3 |           |
| pg142-1013-postgresql-1 | 10.244.165.220 | Sync Standby | running |  3 |         0 |
+-------------------------+----------------+--------------+---------+----+-----------+
root@pg142-1013-postgresql-0:/home/postgres# patronictl pause
Success: cluster management is paused
root@pg142-1013-postgresql-0:/home/postgres# patronictl list
+ Cluster: pg142-1013-postgresql (7289263672843878470) ---+---------+----+-----------+
| Member                  | Host           | Role         | State   | TL | Lag in MB |
+-------------------------+----------------+--------------+---------+----+-----------+
| pg142-1013-postgresql-0 | 10.244.117.143 | Leader       | running |  3 |           |
| pg142-1013-postgresql-1 | 10.244.165.220 | Sync Standby | running |  3 |         0 |
+-------------------------+----------------+--------------+---------+----+-----------+
 Maintenance mode: on

上述,即表示当前集群已停止。此时,PostgreSQL进程仍然存活,如果故障,将需要用户自行启动。
集群暂停恢复方式:

root@pg142-1013-postgresql-0:/home/postgres# patronictl list
+ Cluster: pg142-1013-postgresql (7289263672843878470) ---+---------+----+-----------+
| Member                  | Host           | Role         | State   | TL | Lag in MB |
+-------------------------+----------------+--------------+---------+----+-----------+
| pg142-1013-postgresql-0 | 10.244.117.143 | Leader       | running |  3 |           |
| pg142-1013-postgresql-1 | 10.244.165.220 | Sync Standby | running |  3 |         0 |
+-------------------------+----------------+--------------+---------+----+-----------+
 Maintenance mode: on
root@pg142-1013-postgresql-0:/home/postgres# patronictl resume
Success: cluster management is resumed
root@pg142-1013-postgresql-0:/home/postgres# patronictl list
+ Cluster: pg142-1013-postgresql (7289263672843878470) ---+---------+----+-----------+
| Member                  | Host           | Role         | State   | TL | Lag in MB |
+-------------------------+----------------+--------------+---------+----+-----------+
| pg142-1013-postgresql-0 | 10.244.117.143 | Leader       | running |  3 |           |
| pg142-1013-postgresql-1 | 10.244.165.220 | Sync Standby | running |  3 |         0 |
+-------------------------+----------------+--------------+---------+----+-----------+

通过命令,即可恢复集群。
在恢复集群后,需要对集群中PostgreSQL节点进行处理:
1.重新配置PostgreSQL的参数;
2.根据xxx-sync中最后一次记录的主、同步节点名称信息,在主节点上设置同步复制槽信息;
3.检测恢复后的PostgreSQL节点的是否变更,与最后一次xxx-config中的值,是否一致,否则将无法恢复集群。
集群初始化检测

# cluster has leader key but not initialize key
if not (self.cluster.is_unlocked() or self.sysid_valid(self.cluster.initialize)) and self.has_lock():
    self.dcs.initialize(create_new=(self.cluster.initialize is None), sysid=self.state_handler.sysid)

if not (self.cluster.is_unlocked() or self.cluster.config and self.cluster.config.data) and self.has_lock():
    self.dcs.set_config_value(json.dumps(self.patroni.config.dynamic_configuration, separators=(',', ':')))
    self.cluster = self.dcs.get_cluster()

集群初始化检测,主要检测2个方面的信息:
●集群当前存在leader节点,但xxx-config中的不存在,此时,需要将leader节点上PostgreSQL的sysid设置到xxx-config中;
●集群当前存在leader节点,但未获取到xxx-config信息,需要将leader节点上的配置信息和sysid都设置到xxx-config中,并重新获取集群信息。
该步骤的用途是,防止xxx-config文件被删除,导致从节点加载集群信息失败。
节点状态检测

检测当前PostgreSQL的进程启动到了什么阶段

if self._async_executor.busy:
    return self.handle_long_action_in_progress()

检测启动中的PostgreSQL是否出现异常

msg = self.handle_starting_instance()
if msg is not None:
return msg
节点状态检测,是通过检测PostgreSQL节点的当前运行状态,来确定是否需要进行具体的操作,节点状态检测的方式可分为2种:
1.通过PostgreSQL的运行状态确定;
2.通过异步进程(_async_executor)监听,当前节点处于什么阶段。

节点检测通过后基础操作

we've got here, so any async action has finished.

if self.state_handler.bootstrapping:
    return self.post_bootstrap()

if self.recovering:
    self.recovering = False
if not self._rewind.is_needed:
    # Check if we tried to recover from postgres crash and failed
    msg = self.post_recover()
    if msg is not None:
        return msg

# Reset some states after postgres successfully started up
self._crash_recovery_executed = False
if self._rewind.executed and not self._rewind.failed:
    self._rewind.reset_state()

# The Raft cluster without a quorum takes a bit of time to stabilize.
# Therefore we want to postpone the leader race if we just started up.
if self.cluster.is_unlocked() and self.dcs.__class__.__name__ == 'Raft':
    return 'started as a secondary'

节点状态检测通过后,需要对PostgreSQL进行操作:
1.PostgreSQL启动后操作

def post_bootstrap(self):
    with self._async_response:
        result = self._async_response.result
    # bootstrap has failed if postgres is not running
    if not self.state_handler.is_running() or result is False:
        self.cancel_initialization()
if result is None:
    if not self.state_handler.is_leader():
        return 'waiting for end of recovery after bootstrap'

    self.state_handler.set_role('master')
    ret = self._async_executor.try_run_async('post_bootstrap', self.state_handler.bootstrap.post_bootstrap,
                                             args=(self.patroni.config['bootstrap'], self._async_response))
    return ret or 'running post_bootstrap'

self.state_handler.bootstrapping = False
if not self.watchdog.activate():
    logger.error('Cancelling bootstrap because watchdog activation failed')
    self.cancel_initialization()
self._rewind.ensure_checkpoint_after_promote(self.wakeup)
self.dcs.initialize(create_new=(self.cluster.initialize is None), sysid=self.state_handler.sysid)
self.dcs.set_config_value(json.dumps(self.patroni.config.dynamic_configuration, separators=(',', ':')))
self.dcs.take_leader()
self.set_is_leader(True)
self.state_handler.call_nowait(ACTION_ON_START)
self.load_cluster_from_dcs()

return 'initialized a new cluster'

上述操作,包括pg_rewind后的checkpoint检测、初始化DCS的xxx-config资源、生成xxx-leader资源、加载集群信息等。
2.恢复中的PostgreSQL检测是否需要执行pg_rewind
if self.recovering:
self.recovering = False

if not self._rewind.is_needed:
    # Check if we tried to recover from postgres crash and failed
    msg = self.post_recover()
    if msg is not None:
        return msg

# Reset some states after postgres successfully started up
self._crash_recovery_executed = False
if self._rewind.executed and not self._rewind.failed:
    self._rewind.reset_state()

pg_rewind命令用于将从节点的WAL与主节点的WAL拉齐,一般用于从节点WAL因异常后滞后于主节点WAL。
启动PostgreSQL

is data directory empty?

if self.state_handler.data_directory_empty():
    self.state_handler.set_role('uninitialized')
    self.state_handler.stop('immediate', stop_timeout=self.patroni.config['retry_timeout'])
    # In case datadir went away while we were master.
    self.watchdog.disable()
# is this instance the leader?
if self.has_lock():
    self.release_leader_key_voluntarily()
    return 'released leader key voluntarily as data dir empty and currently leader'

if self.is_paused():
    return 'running with empty data directory'
return self.bootstrap()  # new node
else:
    # check if we are allowed to join
    data_sysid = self.state_handler.sysid
    if not self.sysid_valid(data_sysid):
        # data directory is not empty, but no valid sysid, cluster must be broken, suggest reinit
        return ("data dir for the cluster is not empty, "
                "but system ID is invalid; consider doing reinitialize")
if self.sysid_valid(self.cluster.initialize):
    if self.cluster.initialize != data_sysid:
        if self.is_paused():
            logger.warning('system ID has changed while in paused mode. Patroni will exit when resuming'
                           ' unless system ID is reset: %s != %s', self.cluster.initialize, data_sysid)
            if self.has_lock():
                self.release_leader_key_voluntarily()
                return 'released leader key voluntarily due to the system ID mismatch'
        else:
            logger.fatal('system ID mismatch, node %s belongs to a different cluster: %s != %s',
                         self.state_handler.name, self.cluster.initialize, data_sysid)
            sys.exit(1)
elif self.cluster.is_unlocked() and not self.is_paused():
    # "bootstrap", but data directory is not empty
    if not self.state_handler.cb_called and self.state_handler.is_running() \
            and not self.state_handler.is_leader():
        self._join_aborted = True
        logger.error('No initialize key in DCS and PostgreSQL is running as replica, aborting start')
        logger.error('Please first start Patroni on the node running as master')
        sys.exit(1)
    self.dcs.initialize(create_new=(self.cluster.initialize is None), sysid=data_sysid)

无数据目录启动
无数据目录启动,是指在执行初始化目录异常、恢复节点异常、WAL拉齐异常等场景下,会触发的流程:
1.设置角色,用于后续重新初始化集群;
2.立即停止当前PostgreSQL进程;
3.判断当前节点是否为主节点,主动释放主节点锁;
4.执行启动操作。

def bootstrap(self):
  if not self.cluster.is_unlocked():  # cluster already has leader
      clone_member = self.cluster.get_clone_member(self.state_handler.name)
      member_role = 'leader' if clone_member == self.cluster.leader else 'replica'
      msg = "from {0} '{1}'".format(member_role, clone_member.name)
      ret = self._async_executor.try_run_async('bootstrap {0}'.format(msg), self.clone, args=(clone_member, msg))
      return ret or 'trying to bootstrap {0}'.format(msg)
  
  # no initialize key and node is allowed to be master and has 'bootstrap' section in a configuration file
  elif self.cluster.initialize is None and not self.patroni.nofailover and 'bootstrap' in self.patroni.config:
      if self.dcs.initialize(create_new=True):  # race for initialization
          self.state_handler.bootstrapping = True
          with self._async_response:
              self._async_response.reset()
  
          if self.is_standby_cluster():
              ret = self._async_executor.try_run_async('bootstrap_standby_leader', self.bootstrap_standby_leader)
              return ret or 'trying to bootstrap a new standby leader'
          else:
              ret = self._async_executor.try_run_async('bootstrap', self.state_handler.bootstrap.bootstrap,
                                                       args=(self.patroni.config['bootstrap'],))
              return ret or 'trying to bootstrap a new cluster'
      else:
          return 'failed to acquire initialize lock'
  else:
      create_replica_methods = self.get_standby_cluster_config().get('create_replica_methods', []) \
                               if self.is_standby_cluster() else None
      if self.state_handler.can_create_replica_without_replication_connection(create_replica_methods):
          msg = 'bootstrap (without leader)'
          return self._async_executor.try_run_async(msg, self.clone) or 'trying to ' + msg
      return 'waiting for {0}leader to bootstrap'.format('standby_' if self.is_standby_cluster() else '')

上述代码,表示启动的几种方式:
1.当前集群已有leader节点,当前PostgreSQL将以从节点从主节点上同步数据启动;
2.当前集群没有leader节点,当前PostgreSQL将以主节点启动,如果是备用集群,将以备用集群主节点启动;
3.当前集群为备用集群且没有主节点,从节点通过方式,一般通过协议流方式从主集群上进行数据同步。
有数据目录启动
有数据目录启动,主要校验集群ID与PostgreSQL节点sysid的一致性,触发的主要流程:
1.校验PostgreSQL节点sysid是否有效,如果无效,表示PostgreSQL出现了异常需要重启;
2.校验校验集群ID与PostgreSQL节点sysid是否一致,不一致将无法加入集群,如果集群已暂停,将会释放leader锁占用;
3.检验集群没有leader节点,当前节点将重新初始化集群,将sysid作为新的集群ID启动。
生成PostgreSQL集群

try:
    if self.cluster.is_unlocked():
        ret = self.process_unhealthy_cluster()
    else:
        msg = self.process_healthy_cluster()
        ret = self.evaluate_scheduled_restart() or msg
finally:
    # we might not have a valid PostgreSQL connection here if another thread
    # stops PostgreSQL, therefore, we only reload replication slots if no
    # asynchronous processes are running (should be always the case for the master)
    if not self._async_executor.busy and not self.state_handler.is_starting():
        create_slots = self.state_handler.slots_handler.sync_replication_slots(self.cluster,
                                                                               self.patroni.nofailover)
        if not self.state_handler.cb_called:
            if not self.state_handler.is_leader():
                self._rewind.trigger_check_diverged_lsn()
            self.state_handler.call_nowait(ACTION_ON_START)
        if create_slots and self.cluster.leader:
            err = self._async_executor.try_run_async('copy_logical_slots',
                                                     self.state_handler.slots_handler.copy_logical_slots,
                                                     args=(self.cluster.leader, create_slots))
            if not err:
                ret = 'Copying logical slots {0} from the primary'.format(create_slots)

生成PostgreSQL集群,主要根据当前集群是否存在主节点,判断走健康的集群流程还是非健康的集群流程。
非健康的集群流程

def process_unhealthy_cluster(self):
  """Cluster has no leader key"""

  if self.is_healthiest_node():
      if self.acquire_lock():
          failover = self.cluster.failover
          if failover:
              if self.is_paused() and failover.leader and failover.candidate:
                  logger.info('Updating failover key after acquiring leader lock...')
                  self.dcs.manual_failover('', failover.candidate, failover.scheduled_at, failover.index)
              else:
                  logger.info('Cleaning up failover key after acquiring leader lock...')
                  self.dcs.manual_failover('', '')
          self.load_cluster_from_dcs()
      if self.is_standby_cluster():
          # standby leader disappeared, and this is the healthiest
          # replica, so it should become a new standby leader.
          # This implies we need to start following a remote master
          msg = 'promoted self to a standby leader by acquiring session lock'
          return self.enforce_follow_remote_master(msg)
      else:
          return self.enforce_master_role(
              'acquired session lock as a leader',
              'promoted self to leader by acquiring session lock'
          )
  else:
      return self.follow('demoted self after trying and failing to obtain lock',
                         'following new leader after trying and failing to obtain lock')
  else:
      # when we are doing manual failover there is no guaranty that new leader is ahead of any other node
      # node tagged as nofailover can be ahead of the new leader either, but it is always excluded from elections
      if bool(self.cluster.failover) or self.patroni.nofailover:
          self._rewind.trigger_check_diverged_lsn()
          time.sleep(2)  # Give a time to somebody to take the leader lock
  if self.patroni.nofailover:
      return self.follow('demoting self because I am not allowed to become master',
                         'following a different leader because I am not allowed to promote')
  return self.follow('demoting self because i am not the healthiest node',
                     'following a different leader because i am not the healthiest node')

非健康的集群流程,是确定leader节点的候选,首要条件必须找到一个健康的节点,如何判断健康的节点,主要有以下几个条件:
1.PostgreSQL集群状态非暂停;
2.PostgreSQL节点状态非启动中;
3.PostgreSQL节点允许故障转移;
4.PostgreSQL节点WAL与集群缓存中的(最后一次主节点同步的lsn值)的滞后量在允许的范围内。

 def is_healthiest_node(self):
        if time.time() - self._released_leader_key_timestamp < self.dcs.ttl:
            logger.info('backoff: skip leader race after pre_promote script failure and releasing the lock voluntarily')
            return False
    if self.is_paused() and not self.patroni.nofailover and \
            self.cluster.failover and not self.cluster.failover.scheduled_at:
        ret = self.manual_failover_process_no_leader()
        if ret is not None:  # continue if we just deleted the stale failover key as a master
            return ret

    if self.state_handler.is_starting():  # postgresql still starting up is unhealthy
        return False

    if self.state_handler.is_leader():
        # in pause leader is the healthiest only when no initialize or sysid matches with initialize!
        return not self.is_paused() or not self.cluster.initialize\
                or self.state_handler.sysid == self.cluster.initialize

    if self.is_paused():
        return False

    if self.patroni.nofailover:  # nofailover tag makes node always unhealthy
        return False

    if self.cluster.failover:
        # When doing a switchover in synchronous mode only synchronous nodes and former leader are allowed to race
        if self.is_synchronous_mode() and self.cluster.failover.leader and \
                self.cluster.failover.candidate and not self.cluster.sync.matches(self.state_handler.name):
            return False
        return self.manual_failover_process_no_leader()

    if not self.watchdog.is_healthy:
        logger.warning('Watchdog device is not usable')
        return False

    # When in sync mode, only last known master and sync standby are allowed to promote automatically.
    all_known_members = self.cluster.members + self.old_cluster.members
    if self.is_synchronous_mode() and self.cluster.sync and self.cluster.sync.leader:
        if not self.cluster.sync.matches(self.state_handler.name):
            return False
        # pick between synchronous candidates so we minimize unnecessary failovers/demotions
        members = {m.name: m for m in all_known_members if self.cluster.sync.matches(m.name)}
    else:
        # run usual health check
        members = {m.name: m for m in all_known_members}

    return self._is_healthiest_node(members.values())

 def _is_healthiest_node(self, members, check_replication_lag=True):
        """This method tries to determine whether I am healthy enough to became a new leader candidate or not."""
    my_wal_position = self.state_handler.last_operation()
    if check_replication_lag and self.is_lagging(my_wal_position):
        logger.info('My wal position exceeds maximum replication lag')
        return False  # Too far behind last reported wal position on master

    if not self.is_standby_cluster() and self.check_timeline():
        cluster_timeline = self.cluster.timeline
        my_timeline = self.state_handler.replica_cached_timeline(cluster_timeline)
        if my_timeline < cluster_timeline:
            logger.info('My timeline %s is behind last known cluster timeline %s', my_timeline, cluster_timeline)
            return False

    # Prepare list of nodes to run check against
    members = [m for m in members if m.name != self.state_handler.name and not m.nofailover and m.api_url]

    if members:
        for st in self.fetch_nodes_statuses(members):
            if st.failover_limitation() is None:
                if not st.in_recovery:
                    logger.warning('Master (%s) is still alive', st.member.name)
                    return False
                if my_wal_position < st.wal_position:
                    logger.info('Wal position of %s is ahead of my wal position', st.member.name)
                    # In synchronous mode the former leader might be still accessible and even be ahead of us.
                    # We should not disqualify himself from the leader race in such a situation.
                    if not self.is_synchronous_mode() or st.member.name != self.cluster.sync.leader:
                        return False
                    logger.info('Ignoring the former leader being ahead of us')
    return True

当前节点为健康节点,因当前集群没有主节点,需要执行leader锁抢占。如果当前节点抢占leader锁失败,将作为从节点加入到集群中。
当前节点为异常节点,则会一直等待PostgreSQL节点正常后,参与集群的选举行为。
健康的集群流程

def process_healthy_cluster(self):
  if self.has_lock():
      if self.is_paused() and not self.state_handler.is_leader():
          if self.cluster.failover and self.cluster.failover.candidate == self.state_handler.name:
              return 'waiting to become master after promote...'
      if not self.is_standby_cluster():
          self._delete_leader()
          return 'removed leader lock because postgres is not running as master'

  if self.update_lock(True):
      msg = self.process_manual_failover_from_leader()
      if msg is not None:
          return msg

      # check if the node is ready to be used by pg_rewind
      self._rewind.ensure_checkpoint_after_promote(self.wakeup)

      if self.is_standby_cluster():
          # in case of standby cluster we don't really need to
          # enforce anything, since the leader is not a master.
          # So just remind the role.
          msg = 'no action. I am ({0}), the standby leader with the lock'.format(self.state_handler.name) \
                if self.state_handler.role == 'standby_leader' else \
                'promoted self to a standby leader because i had the session lock'
          return self.enforce_follow_remote_master(msg)
      else:
          return self.enforce_master_role(
              'no action. I am ({0}), the leader with the lock'.format(self.state_handler.name),
              'promoted self to leader because I had the session lock'
          )
  else:
      # Either there is no connection to DCS or someone else acquired the lock
      logger.error('failed to update leader lock')
      if self.state_handler.is_leader():
          if self.is_paused():
              return 'continue to run as master after failing to update leader lock in DCS'
          self.demote('immediate-nolock')
          return 'demoted self because failed to update leader lock in DCS'
      else:
          return 'not promoting because failed to update leader lock in DCS'
else:
      logger.debug('does not have lock')
  lock_owner = self.cluster.leader and self.cluster.leader.name
  if self.is_standby_cluster():
      return self.follow('cannot be a real primary in a standby cluster',
                         'no action. I am ({0}), a secondary, and following a standby leader ({1})'.format(
                              self.state_handler.name, lock_owner), refresh=False)
  return self.follow('demoting self because I do not have the lock and I was a leader',
                     'no action. I am ({0}), a secondary, and following a leader ({1})'.format(
                          self.state_handler.name, lock_owner), refresh=False)

健康的集群流程,是指当前的集群存在leader节点,对该流程的处理,主要有2个方向:
1.检测当前节点为主节点,进行更新leader锁操作,保持主节点心跳,避免从节点竞争锁,如果更新锁失败,将立即释放锁,让其他从节点抢占;
2.检测当前节点非主节点,作为从节点加入集群。

总结
综上所述,Patroni 是一个用于管理 PostgreSQL 数据库集群的高可用性(HA)管理工具,旨在确保数据库系统的连续可用性,以应对节点故障和维护操作等挑战。Patroni 提供了一系列关键功能和特点,使得它成为强大的高可用性解决方案。
总之,在很多场景中,Patroni能够保持PostgreSQL集群友好的运行,保证在集群异常的情况下,通过自动故障转移、数据同步和备份策略等功能,确保数据库集群的稳定性和可用性,使得应用程序能够持续访问数据,即使在节点故障或维护时也不会中断服务。

参考资源
Patroni配置参数https://patroni.readthedocs.io/en/latest/patroni_configuration.html
Patroni基于2.1.5分支源码https://github.com/zalando/patroni/tree/v2.1.5文章来源地址https://www.toymoban.com/news/detail-724368.html

到了这里,关于PostgreSQL基于Patroni方案的高可用启动流程分析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 39学习分布式计算框架 Hadoop 的高可用方案,如 NameNode 集群、ZooKeeper

    Hadoop 是一个分布式计算框架,用于存储和处理大数据。在 Hadoop 集群中,NameNode 是一个关键组件,它负责管理 Hadoop 分布式文件系统(HDFS)中的文件和目录。为了确保高可用性,需要使用多个 NameNode 节点进行冗余备份,并使用 ZooKeeper 进行故障检测和自动故障切换。 以下是学

    2023年04月26日
    浏览(52)
  • patroni+etcd+antdb高可用

    Patroni组件功能 自动创建并管理主备流复制集群,并且通过api接口往dcs(Distributed Configuration Store,通常指etcd、zookeeper、consul等基于Raft协议的键值存储)读取以及更新键值来维护集群的状态。键值包括集群状态、master/slave的节点信息等。 Etcd组件功能 Dcs的一种,存储键值信息,基

    2024年02月09日
    浏览(30)
  • MySQL主从复制基于二进制日志的高可用架构指南

    在现代数据库架构中,MySQL主从复制技术扮演着重要角色。它不仅可以提升数据库性能和可扩展性,还赋予系统卓越的高可用性和灾难恢复能力。本文将深入剖析MySQL主从复制的内部机制,同时通过一个实际案例,展示其在实际场景中的强大作用。 MySQL主从复制基于二进制日志

    2024年02月13日
    浏览(59)
  • 【PostgreSQL架构】PostgreSQL的最佳群集高可用性方案

    转载:【PostgreSQL架构】PostgreSQL的最佳群集高可用性方案-腾讯云开发者社区-腾讯云 (tencent.com) 如果您的系统依赖PostgreSQL数据库并且您正在寻找HA的集群解决方案,我们希望提前告知您这是一项复杂的任务,但并非不可能实现。 我们将讨论一些解决方案,您可以从中选择对您

    2024年02月19日
    浏览(38)
  • 【PG】PostgreSQL高可用方案repmgr部署(非常详细)

    目录 简介 1 概述 1.1 术语 1.2 组件 1.2.1 repmgr 1.2.2 repmgrd 1.3 Repmgr用户与元数据 2 安装部署 2.0 部署环境  2.1 安装要求 2.1.1 操作系统 2.1.2 PostgreSQL 版本 2.1.3 操作系统用户 2.1.4 安装位置 2.1.5 版本要求 2.2 安装 2.2.1 软件包安装 2.2.2 源码编译安装 3 快速开始 3.2 PostgreSQL部署主库

    2024年02月02日
    浏览(46)
  • 基于Flask的高并发部署方案

    在AI部署方案中,Flask是最常用的方案!本文列举几种最常用基于Flask的部署方案。 Flask 是一个轻量级的 Python Web 框架,它非常适合构建小型到中型的应用程序。下面是对 Flask 的详细解释和简单示例: Flask 的特点: 轻量级 :相比于 Django,Flask 更轻量级,更适合小型项目或微

    2024年01月16日
    浏览(70)
  • 【数据库架构】PostgreSQL的最佳群集高可用性方案

    如果您的系统依赖PostgreSQL数据库并且您正在寻找HA的集群解决方案,我们希望提前告知您这是一项复杂的任务,但并非不可能实现。 我们将讨论一些解决方案,您可以从中选择对您的容错要求。 PostgreSQL本身不支持任何多主群集解决方案,例如MySQL或Oracle。尽管如此,仍有许

    2024年02月01日
    浏览(63)
  • PostgreSQL-HA 高可用集群在 Rainbond 上的部署方案

    PostgreSQL 是一种流行的开源关系型数据库管理系统。它提供了标准的SQL语言接口用于操作数据库。 repmgr 是一个用于 PostgreSQL 数据库复制管理的开源工具。它提供了自动化的复制管理,包括: 故障检测和自动故障切换:repmgr 可以检测到主服务器故障并自动切换到备用服务器。

    2024年02月03日
    浏览(38)
  • lvs DR模式+基于五台服务器部署keepalived + lvs DR模式架构(前端带路由)负载均衡的高可用集群

    lvs DR 模式+基于五台服务器部署keepalived + lvs DR模式架构(前端带路由)负载均衡的高可用集群 DR 模式一: 客户端:172.20.26.167 LVS服务器:172.20.26.198 后端服务器:172.20.26.218 后端服务器:172.20.26.210 两台后端服务器 yum install nginx tcpdump -y echo \\\"this is 26.218 page\\\" /usr/share/nginx/html/index

    2024年02月19日
    浏览(52)
  • 基于多反应堆的高并发服务器【C/C++/Reactor】(中)EventLoop初始化和启动

    (一)详述 EventLoop  这个 Dispatcher 是一个事件分发模型,通过这个模型,就能够检测对应的文件描述符的事件的时候,可以使用 epoll/poll/select ,前面说过三选一。另外不管是哪一个底层的检测模型,它们都需要使用一个数据块,这个数据块就叫做 DispatcherData 。除此之外,还有另外一

    2024年01月23日
    浏览(67)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包