人脸识别测试数据分析

这篇具有很好参考价值的文章主要介绍了人脸识别测试数据分析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一个人脸识别研究小组对若干名学生做了人脸识别的测试,将测试结果写入到一个文件 dir_50.txt 中,每一行是一张照片的识别结果+“_照片编号”+“.jpg”的字符串组合,示例如下:

['1709020621', '0']_116.jpg
['1709020621']_115.jpg
['1770603107', '1770603105', '0', '0']_1273.jpg

其中,识别结果是一个列表形式的字符串,方括号中是识别出的学生学号字符串,如果识别出了照片中的多个人,就会包含多个学号字符串;如果检测到了一个人脸但没有识别出学号,则以字符串‘0’表示;测试过程中,一个学生可能被抓拍到多张照片中,所以学生的学号会出现在多行信息中。‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬
使用字典和列表进行数据分析,获取实际参加测试的学生人数和人均被检测次数。‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬
(1)读入 dir_50.txt 文件的内容,处理每一行信息。将其中的学号内容以列表形式保存,丢掉‘0’的字串;照片编号作为字典的关键字,学号列表作为字典的值。转换后示例如下:

'116':[1709020621]
'115':[1709020621]
'117':[1709020621]
'1273':[1770603107,1770603105]

(2)将该字典中的学号提取出来,构造另一个字典,以学号作为字典的关键字,累计学号出现的次数,将累计值作为字典的值。格式示例如下:

'1709020621':3
'1770603107':1
'1770603105':1

(3)累计字典中关键字的个数,即为实际参加测试的学生人数;累加每个关键字对应的值,即为所有学号测试次数;所有学号测试次数与实际测试人数之比,即为人均被测次数。将实际参加测试人数和人均被测次数显示输出在屏幕上。
示例1:

输入: 从文件dir_50.txt读入
输出: "实际参加测试的人数是:11"
     "人均被测次数是:2.5"

解答:
方法一

f=open('dir_50.txt','r',encoding='utf-8')
lines=f.readlines()
f.close()
d={}
for line in lines:
    line=line.split('_')
    k=line[1][:-5]
    v=[]
    for c in eval(line[0]):
        if c !='0':
            v.append(c)
    d[k]=v #第一问结束
d1={}
for i in d:
    for j in d[i]:
        d1[j]=d1.get(j,0)+1  #第二问结束
s=0
for t in d1:
    s=s+int(d1[t])
print("实际参加测试的人数是:{}".format(len(d1)))
print("人均被测次数是:{:.1f}".format(s/len(d1)))  #第三问结束

方法二:文章来源地址https://www.toymoban.com/news/detail-724529.html

f=open('dir_50.txt','r',encoding='utf-8')
lines=f.readlines()
f.close()
d={}
for line in lines:
    line=line.split('_')
    k=line[1][:-5]
    v=[]
    for c in eval(line[0]):
        if c !='0':
            v.append(c)
    d[k]=v #第一问结束
d1={}
for i in d:
    for j in d[i]:
        d1[j]=d1.get(j,0)+1  #第二问结束
s=0
for t in d1:
    s=s+int(d1[t])
print("实际参加测试的人数是:{}".format(len(d1)))
print("人均被测次数是:{:.1f}".format(s/len(d1)))  #第三问结束

到了这里,关于人脸识别测试数据分析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 计算机竞赛 python+大数据校园卡数据分析

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于yolov5的深度学习车牌识别系统实现 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:4分 工作量:4分 创新点:3分 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/d

    2024年02月12日
    浏览(41)
  • 计算机毕设 大数据房价数据分析及可视化 - python 房价分析

    房地产是促进我国经济持续增长的基础性、主导性产业。如何了解一个城市的房价的区域分布,或者不同的城市房价的区域差异。如何获取一个城市不同板块的房价数据? 本项目利用Python实现某一城市房价相关信息的爬取,并对爬取的原始数据进行数据清洗,存储到数据库中

    2024年02月15日
    浏览(45)
  • 计算机毕设 大数据商城人流数据分析与可视化 - python 大数据分析

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月07日
    浏览(45)
  • 计算机毕设 大数据B站数据分析与可视化 - python 数据分析 大数据

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月07日
    浏览(44)
  • 数据分析案例:计算机视觉与图像生成

    在本篇文章中,我们将探讨计算机视觉和图像生成领域的数据分析案例。这些案例将帮助我们更好地理解计算机视觉和图像生成技术的实际应用,以及它们在现实生活中的重要性。 计算机视觉是一种通过计算机程序对图像进行处理和理解的技术。它涉及到图像的获取、处理、

    2024年02月19日
    浏览(43)
  • 25计算机考研院校数据分析 | 四川大学

     四川大学(Sichuan University)简称“川大”,由中华人民共和国教育部直属,中央直管副部级建制,是世界一流大学建设高校、\\\'985工程”、\\\"211工程\\\"重点建设的高水平综合性全国重点大学,入选”2011计划\\\"、\\\"珠峰计划\\\"、“111计划\\\"、\\\"卓越工程师教育培养计划\\\"、\\\"卓越医生教育培养

    2024年04月25日
    浏览(59)
  • 计算机毕设 大数据上海租房数据爬取与分析可视化 -python 数据分析 可视化

    # 1 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项

    2024年02月07日
    浏览(46)
  • 计算机毕设 大数据二手房数据爬取与分析可视化 -python 数据分析 可视化

    # 1 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项

    2024年02月04日
    浏览(45)
  • FastBup:计算机视觉大型图像数据集分析工具

    官方github网址 项目目的 :当前大规模图像数据集一团糟,数据量巨大但质量堪忧,有时候训练集、验证集、测试集会有重复数据造成数据泄露。FastBup可以识别重复项、近似重复项、异常图像、错误标注、异常值,在cpu上就可以处理数百万的图片。 支持环境 :Python 3.7 and 3

    2024年02月07日
    浏览(54)
  • 计算机设计大赛 疫情数据分析与3D可视化 - python 大数据

    🔥 优质竞赛项目系列,今天要分享的是 🚩 大数据全国疫情数据分析与3D可视化 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:2分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/danch

    2024年03月22日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包