较难算法美丽塔时间复杂度O(nlogn)

这篇具有很好参考价值的文章主要介绍了较难算法美丽塔时间复杂度O(nlogn)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

题目


给你一个长度为 n 下标从 0 开始的整数数组 maxHeights 。你的任务是在坐标轴上建 n 座塔。第 i 座塔的下标为 i ,高度为 heights[i] 。
如果以下条件满足,我们称这些塔是 美丽 的:
1 <= heights[i] <= maxHeights[i]
heights 是一个 山状 数组。
如果存在下标 i 满足以下条件,那么我们称数组 heights 是一个 山状 数组:
对于所有 0 < j <= i ,都有 heights[j - 1] <= heights[j]
对于所有 i <= k < n - 1 ,都有 heights[k + 1] <= heights[k]
请你返回满足 美丽塔 要求的方案中,高度和的最大值 。

时间复杂度


O(nlogn)
典型样例分析
当i是山顶时,Left[i]记录[0,i]的最大高度和,Right[i]记录[i,n)的最大高度和。

笨办法


由于赛场时间紧,压力大。所以只想到一个笨办法。从小到处理最大高度。下面以Left[i]为例来说明。如果不存在j(0<=j<i)使得maxHeight[j] < maxHeight[i] ,那么[0,i]的高度全为)maxHeight[i],如{5,4,3,2,1};如果只存在唯一的j,则[0,j]高度不变,(j,i]的高度为maxHeight[i],如{3,1,2}。如果存在多个j,以j最大的为准,如{2,1,3}。如果maxHeight[j] == maxHeight[i],则height[j]变和不变的结果都一样。

代码

核心代码

class Solution {
public:
    long long maximumSumOfHeights(vector<int>& maxHeights) {
        m_c = maxHeights.size();
        std::multimap<int, int> mHeightIndex;
        for (int i = 0; i < m_c; i++)
        {
            mHeightIndex.emplace(maxHeights[i], i);
        }
        
        for (const auto& [h, i] : mHeightIndex)
        {
            {//计算m_mLeft
                auto it = m_mLeft.lower_bound(i);
                if (m_mLeft.begin() == it)
                {
                    m_mLeft[i] = (long long)h * (i + 1);
                }
                else
                {
                    auto pre = std::prev(it);
                    m_mLeft[i] = pre->second + (long long)h * (i - pre->first);
                }
            }
            {//计算m_mRight
                auto it = m_mRight.upper_bound(i);
                if (m_mRight.end() == it)
                {
                    m_mRight[i] = (long long)h * (m_c - i);
                }
                else
                {
                    m_mRight[i] = (long long)it->second + (long long)h * (it->first - i);
                }
            }
        }
        long long llRet = 0;
        for (int i = 0; i < m_c; i++)
        {//假定i是山顶            
            long long llCur = m_mLeft[i] + m_mRight[i] - maxHeights[i];
            llRet = max(llRet, llCur);
        }        
        return llRet;
    }
    int m_c;
    std::map<int, long long> m_mLeft, m_mRight;
};


测试用代码


class CDebug : public Solution
{
public:
    long long maximumSumOfHeights( vector<int>& maxHeights, vector<int>& vLeft, vector<int>& vRight)
    {
        long long llRet = Solution::maximumSumOfHeights(maxHeights);
        for (const auto& it : m_mLeft)
        {
            assert(it.second == vLeft[it.first]);
        }
        for (const auto& it : m_mRight)
        {
            assert(it.second == vRight[it.first]);
        }

        //调试用代码
        std::cout << "Left: ";
        for (int i = 0; i < m_c; i++)
        {
            std::cout << m_mLeft[i] << " ";
        }
        std::cout << std::endl;
        std::cout << "Right: ";
        for (int i = 0; i < m_c; i++)
        {
            std::cout << m_mRight[i] << " ";
        }
        std::cout << std::endl;
        return llRet;
    }
};
int main()
{
    vector < vector<vector<int>>> param = { {{1,2,3,4,5} ,{1,3,6,10,15},{5,8,9,8,5}} ,
        {{5,4,3,2,1},{5,8,9,8,5},{15,10,6,3,1}} ,
        {{1,2,4,3,5},{1,3,7,9,14},{5,8,10,6,5}},
    {{3,1,2}, {3,2,4},{5,2,2}},
    {{2,1,3},{2,2,5},{4,2,3}} };
    for ( auto& vv : param)
    {
        auto res = CDebug().maximumSumOfHeights(vv[0],vv[1],vv[2]);
    }
    //auto res = Solution().maxPalindromes("rire", 3);
        
//CConsole::Out(res);
}

测试环境


Win10,VS2022 C++17


相关下载

更优解: 美丽塔O(n)解法单调栈_闻缺陷则喜何志丹的博客-CSDN博客

源码及测试用例
https://download.csdn.net/download/he_zhidan/88370053

较难算法美丽塔时间复杂度O(nlogn),数据结构与算法,# 算法题,算法,c++,数据结果与算法,美丽塔,最大高度,映射,红黑树

其它

视频课程

如果你觉得复杂,想从简单的算法开始,可以学习我的视频课程。

https://edu.csdn.net/course/detail/38771

我的其它课程

https://edu.csdn.net/lecturer/6176

测试环境

win7 VS2019 C++17 或Win10 VS2022 Ck++17

相关下载

算法精讲《闻缺陷则喜算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

作者人生格言

有所得,以墨记之,故曰墨家

闻缺陷则喜。问题发现得越早,越给老板省钱。

算法是程序的灵魂

较难算法美丽塔时间复杂度O(nlogn),数据结构与算法,# 算法题,算法,c++,数据结果与算法,美丽塔,最大高度,映射,红黑树文章来源地址https://www.toymoban.com/news/detail-724959.html

到了这里,关于较难算法美丽塔时间复杂度O(nlogn)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构与算法-时间复杂度与空间复杂度

    数据结构是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。 算法就是定义良好的计算过程,他取一个或一组的值为输入,并产生一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果。 算法在

    2024年02月07日
    浏览(49)
  • 数据结构与算法—时间复杂度和空间复杂度

    目录 1、什么是数据结构? 2、什么是算法? 3、算法的复杂度 4、时间复杂度 (1) 时间复杂度的概念:  (2) 大O的渐进表示法:  六个例题: (3) 时间复杂度对比:  三个例题:  OJ题分析时间复杂度 5、空间复杂度 (1)常见复杂度对比  (2)OJ题分析空间复杂度 小结 数据结构 (D

    2024年02月07日
    浏览(92)
  • 算法的时间复杂度和空间复杂度(数据结构)

    目录 1、算法效率 1如何衡量一个算法的好坏 2算法的复杂度 2、时间复杂度 1时间复杂度的概念 2大O的渐进表示法 2时间复杂度计算例题 1、计算Func2的时间复杂度 2、计算Func3的时间复杂度 3、计算Func4的时间复杂度 4、计算strchr的时间复杂度 5、计算BubbleSort的时间复杂度 6、计算

    2024年02月03日
    浏览(68)
  • 学习数据结构:算法的时间复杂度和空间复杂度

    衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。 时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。 算法的时间复杂度 算法中的基本操作的执行次数,为算法的时间复杂度。 算法的

    2024年04月11日
    浏览(46)
  • 【数据结构与算法】1.时间复杂度和空间复杂度

    📚博客主页:爱敲代码的小杨. ✨专栏:《Java SE语法》 ❤️感谢大家点赞👍🏻收藏⭐评论✍🏻,您的三连就是我持续更新的动力❤️ 🙏小杨水平有限,欢迎各位大佬指点,相互学习进步! 算法效率分为两种:第一种是时间效率;第二种是空间效率。时间效率又称为时间

    2024年01月20日
    浏览(54)
  • 数据结构 | 算法的时间复杂度和空间复杂度【详解】

    数据结构(Data Structure)是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。 算法(Algorithm):就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转

    2024年02月08日
    浏览(57)
  • 【数据结构与算法篇】时间复杂度与空间复杂度

       目录 一、数据结构和算法 1.什么是数据结构?  2.什么是算法? 3.数据结构和算法的重要性 二、算法的时间复杂度和空间复杂度 1.算法效率 2.算法的复杂度 3.复杂度在校招中的考察 4.时间复杂度 5.空间复杂度  6.常见复杂度对比 7.复杂度的OJ练习   👻内容专栏:《数据结

    2023年04月24日
    浏览(67)
  • 【数据结构与算法篇】之时间复杂度与空间复杂度

    ❤️博客主页: 小镇敲码人 🍏 欢迎关注:👍点赞 👂🏽留言 😍收藏 🌞友友们暑假快乐,好久不见呀!!!💖💖💖 🍉 有人曾经问过我这样一个问题,“人终其一身,执着追求的东西究竟是什么?”我是这样回答的,”我们终其一生都在寻找着那个和我们灵魂极其契合

    2024年02月12日
    浏览(55)
  • 从头开始:数据结构和算法入门(时间复杂度、空间复杂度)

        目录 文章目录 前言 1.算法效率 1.1 如何衡量一个算法的好坏 1.2 算法的复杂度 2.时间复杂度  2.1 时间复杂度的概念 2.2 大O的渐进表示法 2.3常见时间复杂度计算 3.空间复杂度 4.常见复杂度对比 总结 前言         C语言的学习篇已经结束,今天开启新的篇章——数据结构

    2024年02月14日
    浏览(53)
  • 【数据结构初阶】算法的时间复杂度和空间复杂度

    1.1 如何衡量一个算法的好坏 如何衡量一个算法的好坏呢? 比如对于以下斐波那契数列: 斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢? 1.2 算法的复杂度 算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此

    2024年02月08日
    浏览(75)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包