【Linux】线程池 | 自旋锁 | 读写锁

这篇具有很好参考价值的文章主要介绍了【Linux】线程池 | 自旋锁 | 读写锁。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


一、线程池

1. 线程池模型和应用场景

线程池是一种线程使用模式。线程过多会带来调度开销,进而影响缓存局部性和整体性能。而线程池维护着多个线程,等待着监督管理者分配可并发执行的任务。这避免了在处理短时间任务时创建与销毁线程的代价。线程池不仅能够保证内核的充分利用,还能防止过分调度。可用线程数量应该取决于可用的并发处理器、处理器内核、内存、网络sockets等的数量。

💕 线程池模型

线程池模型本质上也是生产者消费者模型,线程池的实现原理是:在线程池中预先准备好并创建一批线程,然后上层将任务push到任务队列中,休眠的线程如果检测到任务队列中有任务,就直接被操作系统唤醒,然后去消费并处理任务,唤醒一个线程的代价比创建一个线程的代价小的很多。

【Linux】线程池 | 自旋锁 | 读写锁,Linux,linux,运维,服务器

任务线程指的是生产者,任务队列指的是交易场所,右边的一大批线程指的是消费者,因此。线程池的本质还是生产消费模型。

💕 线程池的应用场景

  1. 需要大量的线程来完成任务,且完成任务的时间比较短。 WEB服务器完成网页请求这样的任务,使用线程池技术是非常合适的。因为单个任务小,而任务数量巨大,你可以想象一个热门网站的点击次数。 但对于长时间的任务,比如一个Telnet连接请求,线程池的优点就不明显了。因为Telnet会话时间比线程的创建时间大多了。
  2. 对性能要求苛刻的应用,比如要求服务器迅速响应客户请求。
  3. 接受突发性的大量请求,但不至于使服务器因此产生大量线程的应用。突发性大量客户请求,在没有线程池情况下,将产生大量线程,虽然理论上大部分操作系统线程数目最大值不是问题,短时间内产生大量线程可能使内存到达极限,出现错误。

2. 单例模式实现线程池(懒汉模式)

💕 ThreadPool.hpp

#pragma once
#include <iostream>
#include <string>
#include <vector>
#include <queue>
#include <unistd.h>
#include "Thread.hpp"
#include "Task.hpp"
#include "lockGuard.hpp"
using namespace std;

const static int N = 5;

// 将此代码设计成单例模式————懒汉模式

template <class T>
class ThreadPool
{
private:
	ThreadPool(int num = N) : _num(num)
	{
		pthread_mutex_init(&_lock, nullptr);
		pthread_cond_init(&_cond, nullptr);
	}
	ThreadPool(const ThreadPool<T>& tp) = delete;
	void operator=(const ThreadPool<T>& tp) = delete;
public:
	// 设计一个静态成员函数来返回创建的对象
	static ThreadPool<T>* getinstance()
	{
		if(_instance == nullptr)
		{
			LockGuard lockguard(&_instance_lock);
			{
				if(_instance == nullptr)
				{
					_instance = new ThreadPool<T>();
					_instance->init();
					_instance->start();
				}
			}
		}
		return _instance;
	}

	pthread_mutex_t *getlock()
	{
		return &_lock;
	}

	void threadWait()
	{
		pthread_cond_wait(&_cond, &_lock);
	}

	void threadWake()
	{
		pthread_cond_signal(&_cond);
	}

	bool isEmpty()
	{
		return _tasks.empty();
	}

	void init()
	{
		for (int i = 0; i < _num; i++)
		{
			_threads.push_back(Thread(i + 1, threadRoutine, this));
		}
	}

	void start()
	{
		for (auto &t : _threads)
		{
			t.run();
		}
	}

	void check()
	{
		for (auto &t : _threads)
			cout << t.threadname() << " running..." << endl;
	}

	static void threadRoutine(void *args)
	{
		ThreadPool<T> *tp = static_cast<ThreadPool<T> *>(args);
		while (true)
		{
			T t;
			// 检测此时有没有任务, 如果有任务就处理任务, 否则就挂起等待
			{
				LockGuard lockguard(tp->getlock());
				while (tp->isEmpty())
				{
					tp->threadWait();
				}
				t = tp->popTask();
			}
			t();
			cout << "thread handler done, result: " << t.formatRes() << endl;
		}
	}

	T popTask()
	{
		T t = _tasks.front();
		_tasks.pop();
		return t;
	}

	void pushTask(const T &t)
	{
		LockGuard lockguard(&_lock);
		_tasks.push(t);
		threadWake();
	}

	~ThreadPool()
	{
		for (auto &t : _threads)
		{
			t.join();
		}
		pthread_mutex_destroy(&_lock);
		pthread_cond_destroy(&_cond);
	}

private:
	vector<Thread> _threads;
	int _num;

	queue<T> _tasks; // 使用stl的自动扩容机制
	pthread_mutex_t _lock;
	pthread_cond_t _cond;

	static ThreadPool<T>* _instance;
	static pthread_mutex_t _instance_lock;
};

template<class T>
ThreadPool<T>* ThreadPool<T>::_instance = nullptr;

template<class T>
pthread_mutex_t ThreadPool<T>::_instance_lock = PTHREAD_MUTEX_INITIALIZER;

💕 Thread.hpp

#pragma once

#include <iostream>
#include <cstdlib>
#include <string>
#include <pthread.h>
using namespace std;

class Thread
{
public:
    typedef enum{
        NEW = 0,
        RUNNING,
        EXITED
    } ThreadStatus;
    typedef void (*func_t)(void*);

public:
    Thread(int num, func_t func, void* args) :_tid(0), _status(NEW),_func(func),_args(args)
    {
        char name[128];
        snprintf(name, 128, "thread-%d", num);
        _name = name;
    }

    int status(){ return _status; }
    string threadname(){ return _name; }

    pthread_t get_id()
    {
        if(_status == RUNNING)
            return _tid;
        else
            return 0;
    }

    static void* thread_run(void* args)
    {
        Thread* ti = static_cast<Thread*>(args);
        (*ti)();
        return nullptr;
    }

    void operator()()
    {
        if(_func != nullptr)
            _func(_args);
    }

    void run() // 封装线程运行
    {
        int n = pthread_create(&_tid, nullptr, thread_run, this);
        if(n != 0)
            exit(-1);
        _status = RUNNING; // 线程状态变为运行
    }

    void join() // 疯转线程等待
    {
        int n = pthread_join(_tid, nullptr);
        if(n != 0)
        {
            cout << "main thread join thread: " << _name << "error" << endl;
            return;
        }
        _status = EXITED;
    }

    ~Thread(){}
private:
    pthread_t _tid;
    string _name;
    func_t _func; // 线程未来要执行的回调
    void* _args;
    ThreadStatus _status;
};

💕 Task.hpp

#pragma once
#include <iostream>
#include <string>
using namespace std;

class Task
{
public:
    Task()
    {}
    Task(int x, int y, char op):_x(x), _y(y), _op(op), _result(0), _exitcode(0)
    {}
    void operator()()
    {
        switch (_op)
        {
        case '+':
            _result = _x + _y; 
            break;
        case '-':
            _result = _x - _y;
            break;
        case '*':
            _result = _x * _y;
            break;
        case '/':
        {
            if(_y == 0)
                _exitcode = -1;
            else 
                _result = _x / _y;
        }
        break;
        case '%':
        {
            if(_y == 0)
                _exitcode = -1;
            else 
                _result = _x % _y;
        }
        break;
        default:
            break;
        }
    }

    string formatArge()
    {
        return to_string(_x) + _op + to_string(_y) + "=";
    }

    string formatRes()
    {
        return to_string(_result) + "(" + to_string(_exitcode) + ")";
    }

    ~Task()
    {}

private:
    int _x;
    int _y;
    char _op;

    int _result;
    int _exitcode;
};

💕 lockGuard.hpp

#pragma once

#include <iostream>
#include <pthread.h>

using namespace std;

class Mutex // 自己不维护锁,有外部传入
{
public:
    Mutex(pthread_mutex_t *mutex):_pmutex(mutex)
    {}
    void lock()
    {
        pthread_mutex_lock(_pmutex);
    }
    void unlock()
    {
        pthread_mutex_unlock(_pmutex);
    }
    ~Mutex()
    {}
private:
    pthread_mutex_t *_pmutex;
};

class LockGuard // 自己不维护锁,有外部传入
{
public:
    LockGuard(pthread_mutex_t *mutex):_mutex(mutex)
    {
        _mutex.lock();
    }
    ~LockGuard()
    {
        _mutex.unlock();
    }
private:
    Mutex _mutex;
};

💕 main.cc

#include "ThreadPool_V4.hpp"
#include "Task.hpp"
#include <memory>

const string ops = "+-*/%";

int main()
{
    srand(time(nullptr) ^ getpid());

    while(true)
    {
        sleep(1);
        int x = rand() % 100;
        int y = rand() % 100;
        char op = ops[(x + y) % ops.size()];
        Task t(x, y, op);
		ThreadPool<Task>::getinstance()->pushTask(t);
        // tp->pushTask(t);
        cout << "the question is what: " << t.formatArge() << " ? " << endl;
    }
    return 0;
}

【Linux】线程池 | 自旋锁 | 读写锁,Linux,linux,运维,服务器


二、其他常见的锁

1. STL、智能指针和线程安全

💕 STL中的容器是否是线程安全的?

不是;原因是, STL 的设计初衷是将性能挖掘到极致, 而一旦涉及到加锁保证线程安全, 会对性能造成巨大的影响,而且对于不同的容器, 加锁方式的不同, 性能可能也不同(例如hash表的锁表和锁桶).
因此 STL 默认不是线程安全. 如果需要在多线程环境下使用, 往往需要调用者自行保证线程安全。

💕 智能指针是线程安全的吗?

智能指针是线程安全的吗?unique_ptr 是和资源强关联,只是在当前代码块范围内生效,因此不涉及线程安全问题。对于 shared_ptr,多个对象需要共有一个引用计数变量,所以会存在线程安全问题。但是标准库实现的时候也考虑到了这个问题,就基于原子操作(Compare And Swap(CAS)) 的方式保证 shared_ptr 能够高效原子地操作引用计数。shared_ptr 是线程安全的,但不意味着对其管理的资源进行操作是线程安全的,所以对 shared_ptr 管理的资源进行操作时也可能需要进行加锁保护。


2. 其他常见的锁

  • 悲观锁:悲观锁做事比较悲观,它认为多线程同时修改共享资源的概率比较高,于是很容易出现冲突,所以访问贡献资源前,先要进行加锁保护。常见的悲观锁有:互斥锁、自旋锁和读写锁等。
  • 乐观锁:乐观锁做事比较乐观,它乐观地认为共享数据不会被其他线程修改,因此不上锁。它的工作方式是:先修改完共享数据,再判断这段时间内有没有发生冲突。如果其他线程没有修改共享数据,那么则操作成功。如果发现其他线程已经修改该共享数据,就放弃本次操作。乐观锁全程并没有加锁,所以它也叫无锁编程。乐观锁主要采取两种方式:版本号机制(Gitee等)和 CAS 操作。乐观锁虽然去除了加锁和解锁的操作,但是一旦发生冲突,重试的成本是很高的,所以只有在冲突概率非常低,且加锁成本非常高的场景下,才考虑使用乐观锁。
  • CAS 操作:当需要更新数据时,判断当前内存值和之前取得的值是否相等。如果相等则用新值更新。若不等则失败,失败则重试,一般是一个自旋的过程,即不断重试。
  • 自旋锁:使用自旋锁的时候,当多线程发生竞争锁的情况时,加锁失败的线程会忙等待(这里的忙等待可以用 while 循环等待实现),直到它拿到锁。而互斥锁加锁失败后,线程会让出 CPU 资源给其他线程使用,然后该线程会被阻塞挂起。如果临界区代码执行时间过长,自旋的线程会长时间占用 CPU 资源,所以自旋的时间和临界区代码执行的时间是成正比的关系。如果临界区代码执行的时间很短,就不应该使用互斥锁,而应该选用自旋锁。因为互斥锁加锁失败,是需要发生上下文切换的,如果临界区执行的时间比较短,那可能上下文切换的时间会比临界区代码执行的时间还要长。

三、读者写者问题

1. 读者写者模型

在编写多线程的时候,有一种情况是十分常见的。那就是,有些公共数据修改的机会比较少。相比较改写,它们读的机会反而高的多。通常而言,在读的过程中,往往伴随着查找的操作,中间耗时很长。给这种代码段加锁,会极大地降低我们程序的效率。那么有没有一种方法,可以专门处理这种多读少写的情况呢?

这就需要我们的读者写者模型出场了,读者写者模型其实也是维护321原则;三种关系:读者与读者、读者与写者、写者与写者。两种对象:读者和写者。一个交易场所:需要写入和从中读取的缓冲区。

下面我们来看一下读者写者模型的三种关系:

  • 读者与读者:没有关系
  • 读者与写者:互斥与同步
  • 写者与写者:互斥

那么,为什么在生产者消费者模型中,消费者和消费者是互斥关系,而在读者写者问题中,读者和读者之间没有关系呢?

读者写者模型和生产者消费者模型的最大区别就是:消费者会将数据拿走,而读者不会拿走数据,读者仅仅是对数据做读取,并不会进行任何修改的操作,因此共享资源也不会因为有多个读者来读取而导致数据不一致的问题。


2. 读写锁

在读者写者模型中,pthread库为我们提供了 读写锁 来维护其中的同步与互斥关系。读写锁由读锁写锁两部分构成,如果只读取共享资源用读锁加锁,如果要修改共享资源则用写锁加锁。所以,读写锁适用于能明确区分读操作和写操作的场景。

读写锁的工作原理:

当写锁没有被写线程持有时,多个读线程能够并发地持有读锁,这大大提高了共享资源的访问效率。因为读锁是用于读取共享资源的场景,所以多个线程同时持有读锁也不会破坏共享资源的数据。但是,一旦写锁被写进程持有后,读线程获取读锁的操作会被阻塞,而其它写线程的获取写锁的操作也会被阻塞。

伪代码:

// 写者进程/线程执行的函数
void Writer()
{
	while(true)
	{
		P(wCountMutex); // 进入临界区
		if(wCount == 0)
			P(rMutex); // 当第一个写者进入,如果有读者则阻塞读者
		wCount++;// 写者计数 + 1
		V(wCountMutex); // 离开临界区

		P(wDataMutex); // 写者写操作之间互斥,进入临界区
		write(); // 写数据
		V(wDataMutex); // 离开临界区

		P(wCountMutex); // 进入临界区
		wCount--; // 写完数据,准备离开
		if(wCount == 0)
		{
			V(rMutex);  // 最后一个写者离开了,则唤醒读者
		}
		V(wCountMutex); //离开临界区
	}
}

// 读者进程/线程执行的次数
void reader()
{
	while(TRUE)
	{
		P(rMutex);
		P(rCountMutex); // 进入临界区
		if ( rCount == 0 )
			P(wDataMutex); // 当第一个读者进入,如果有写者则阻塞写者写操作
		rCount++;
		V(rCountMutex); // 离开临界区
		V(rMutex);
		read( ); // 读数据

		P(rCountMutex); // 进入临界区
		rCount--;
		if ( rCount == 0 )
			V(wDataMutex); // 当没有读者了,则唤醒阻塞中写者的写操作
		V(rCountMutex); // 离开临界区
	}
}

【Linux】线程池 | 自旋锁 | 读写锁,Linux,linux,运维,服务器

初始化

int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock,const pthread_rwlockattr_t
*restrict attr);

销毁

int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

加锁和解锁

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

读者写者问题很明显会存在读者优先还是写者优先的问题,如果是读者优先的话,可能就会带来写者饥饿的问题。而写者优先可以保证写线程不会饿死,但如果一直有写线程获取写锁,那么读者也会被饿死。所以使用读写锁时,需要考虑应用场景。读写锁通常用于数据被读取的频率非常高,而被修改的频率非常低。注:Linux 下的读写锁默认是读者优先的。文章来源地址https://www.toymoban.com/news/detail-725222.html

到了这里,关于【Linux】线程池 | 自旋锁 | 读写锁的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【运维】Linux 跨服务器复制文件文件夹

    如果是云服务 建议用内网ip scp是secure copy的简写,用于在Linux下进行远程拷贝文件的命令,和它类似的命令有cp,不过cp只是在本机进行拷贝不能跨服务器,而且scp传输是加密的。可能会稍微影响一下速度。当你服务器硬盘变为只读 read only system时,用scp可以帮你把文件移出来

    2024年02月08日
    浏览(66)
  • 【Linux 服务器运维】定时任务 crontab 详解 | 文末送书

    本文思维导图概述的主要内容: 1.1 什么是 crontab Crontab 是一个在 Unix 和 Linux 操作系统上 用于定时执行任务 的工具。它允许用户创建和管理计划任务,以便在特定的时间间隔或时间点自动运行命令或脚本。Crontab 是 cron table 的缩写, cron 指的是 Unix 系统中的一个后台进程,它

    2024年02月08日
    浏览(86)
  • 【Linux运维】shell脚本检查服务器内存和CPU利用率

    在管理服务器时候写了一个 shell脚本,在服务上实现每天凌晨3点查系统的指定文件夹下的容量大小,如果超过10G就要删除3天前的内容,还要时刻查询内存和cpu利用率,如果超过80%就要提示用户出现过载 将以上代码保存为一个.sh文件,然后通过crontab在每天凌晨3点运行即可:

    2024年02月09日
    浏览(65)
  • Linux本地部署1Panel服务器运维管理面板并实现公网访问

    1Panel 是一个现代化、开源的 Linux 服务器运维管理面板。高效管理,通过 Web 端轻松管理 Linux 服务器,包括主机监控、文件管理、数据库管理、容器管理等 下面我们介绍在Linux 本地安装1Panel 并结合cpolar 内网穿透工具实现远程访问1Panel 管理界面 执行如下命令一键安装 1Panel: 安

    2024年02月04日
    浏览(92)
  • Linux服务器常见运维性能测试(1)综合跑分unixbench、superbench

    最近需要测试一批服务器的相关硬件性能,以及在常规环境下的硬件运行稳定情况,需要持续拷机测试稳定性。所以找了一些测试用例。本次测试包括在服务器的高低温下性能记录及压力测试,高低电压下性能记录及压力测试,常规环境下CPU满载稳定运行的功率记录。 这个系

    2024年02月04日
    浏览(77)
  • 【Linux后端服务器开发】封装线程池实现TCP多线程通信

    目录 一、线程池模块 Thread.h LockGuard.h ThreadPool.h 二、任务模块模块 Task.h 三、日志模块 Log.h 四、守护进程模块 Deamon.h  五、TCP通信模块 Server.h Client.h server.cpp client.cpp 关于TCP通信协议的封装,此篇博客有详述: 【Linux后端服务器开发】TCP通信设计_命运on-9的博客-CSDN博客 线程池

    2024年02月16日
    浏览(44)
  • 【Linux网络编程】高并发服务器框架 线程池介绍+线程池封装

    前言 一、线程池介绍 💻线程池基本概念 💻线程池组成部分 💻线程池工作原理  二、线程池代码封装 🌈main.cpp 🌈ThreadPool.h 🌈ThreadPool.cpp 🌈ChildTask.h  🌈ChildTask.cpp 🌈BaseTask.h 🌈BaseTask.cpp 三、测试效果 四、总结 📌创建线程池的好处 本文主要学习 Linux内核编程 ,结合

    2024年01月16日
    浏览(92)
  • [1Panel]开源,现代化,新一代的 Linux 服务器运维管理面板

    本期测评试用一下1Panel这款面板。1Panel是国内飞致云旗下开源产品。整个界面简洁清爽,后端使用GO开发,前端使用VUE的Element-Plus作为UI框架,整个面板的管理都是基于docker的,想法很先进。官方还提供了视频的使用教程,本期为大家按照本专栏的基本内容进行多方面的测评。

    2024年02月07日
    浏览(89)
  • Linux网络编程:多进程 多线程_并发服务器

    文章目录: 一:wrap常用函数封装 wrap.h  wrap.c server.c封装实现 client.c封装实现 二:多进程process并发服务器 server.c服务器 实现思路 代码逻辑  client.c客户端 三:多线程thread并发服务器 server.c服务器 实现思路 代码逻辑  client.c客户端 ​​​​   read 函数的返回值 wrap.h  wrap

    2024年02月12日
    浏览(54)
  • 华为云云耀云服务器L实例评测 | Linux系统宝塔运维部署H5游戏

    本章节内容,我们主要介绍华为云耀服务器L实例,从云服务的优势讲起,然后讲解华为云耀服务器L实例资源面板如何操作,如何使用宝塔运维服务,如何使用运维工具可视化安装nginx,最后部署一个自研的H5的小游戏(6岁的小朋友玩的很开心😁)。 前端的同学如果想把自己

    2024年02月07日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包