学习pytorch13 神经网络-搭建小实战&Sequential的使用

这篇具有很好参考价值的文章主要介绍了学习pytorch13 神经网络-搭建小实战&Sequential的使用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

B站小土堆pytorch视频学习

官网

https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Sequential

sequential 将模型结构组合起来 以逗号分割,按顺序执行,和compose使用方式类似。
学习pytorch13 神经网络-搭建小实战&Sequential的使用,学习pytorch,神经网络,pytorch,python

模型结构

学习pytorch13 神经网络-搭建小实战&Sequential的使用,学习pytorch,神经网络,pytorch,python

根据模型结构和数据的输入shape,计算用在模型中的超参数

学习pytorch13 神经网络-搭建小实战&Sequential的使用,学习pytorch,神经网络,pytorch,python

箭头指向部分还需要一层flatten层,展开输入shape为一维
学习pytorch13 神经网络-搭建小实战&Sequential的使用,学习pytorch,神经网络,pytorch,python

code

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter


class MySeq(nn.Module):
    def __init__(self):
        super(MySeq, self).__init__()
        self.conv1 = Conv2d(3, 32, kernel_size=5, stride=1, padding=2)
        self.maxp1 = MaxPool2d(2)
        self.conv2 = Conv2d(32, 32, kernel_size=5, stride=1, padding=2)
        self.maxp2 = MaxPool2d(2)
        self.conv3 = Conv2d(32, 64, kernel_size=5, stride=1, padding=2)
        self.maxp3 = MaxPool2d(2)
        self.flatten1 = Flatten()
        self.linear1 = Linear(1024, 64)
        self.linear2 = Linear(64, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.maxp1(x)
        x = self.conv2(x)
        x = self.maxp2(x)
        x = self.conv3(x)
        x = self.maxp3(x)
        x = self.flatten1(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x

class MySeq2(nn.Module):
    def __init__(self):
        super(MySeq2, self).__init__()
        self.model1 = Sequential(Conv2d(3, 32, kernel_size=5, stride=1, padding=2),
                                 MaxPool2d(2),
                                 Conv2d(32, 32, kernel_size=5, stride=1, padding=2),
                                 MaxPool2d(2),
                                 Conv2d(32, 64, kernel_size=5, stride=1, padding=2),
                                 MaxPool2d(2),
                                 Flatten(),
                                 Linear(1024, 64),
                                 Linear(64, 10)
                                 )

    def forward(self, x):
        x = self.model1(x)
        return x


myseq = MySeq()
input = torch.ones(64, 3, 32, 32)
print(myseq)
print(input.shape)
output = myseq(input)
print(output.shape)

myseq2 = MySeq2()
print(myseq2)
output2 = myseq2(input)
print(output2.shape)

wirter = SummaryWriter('logs')
wirter.add_graph(myseq, input)
wirter.add_graph(myseq2, input)

running log

MySeq(
  (conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (maxp1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (maxp2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (maxp3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (flatten1): Flatten(start_dim=1, end_dim=-1)
  (linear1): Linear(in_features=1024, out_features=64, bias=True)
  (linear2): Linear(in_features=64, out_features=10, bias=True)
)
torch.Size([64, 3, 32, 32])
torch.Size([64, 10])
MySeq2(
  (model1): Sequential(
    (0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Flatten(start_dim=1, end_dim=-1)
    (7): Linear(in_features=1024, out_features=64, bias=True)
    (8): Linear(in_features=64, out_features=10, bias=True)
  )
)
torch.Size([64, 10])

网络结构可视化

from torch.utils.tensorboard import SummaryWriter
wirter = SummaryWriter('logs')
wirter.add_graph(myseq, input)
tensorboard --logdir=logs

tensorboard 展示图文件, 双击每层网络,可查看层定义细节
学习pytorch13 神经网络-搭建小实战&Sequential的使用,学习pytorch,神经网络,pytorch,python文章来源地址https://www.toymoban.com/news/detail-725363.html

到了这里,关于学习pytorch13 神经网络-搭建小实战&Sequential的使用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Pytorch学习第二周--Day 12-13: 构建你的第一个神经网络

    Day 12-13: 构建你的第一个神经网络 在这两天里,我动手实践构建了我的第一个神经网络,目的是解决一个基本的分类问题。使用了两个主流的深度学习框架:PyTorch和TensorFlow,以对比和理解它们在神经网络构建方面的不同。 目标:构建一个全连接的神经网络来处理分类问题。

    2024年01月20日
    浏览(40)
  • PyTorch深度学习实战(3)——使用PyTorch构建神经网络

    我们已经学习了如何从零开始构建神经网络,神经网络通常包括输入层、隐藏层、输出层、激活函数、损失函数和学习率等基本组件。在本节中,我们将学习如何在简单数据集上使用 PyTorch 构建神经网络,利用张量对象操作和梯度值计算更新网络权重。 1.1 使用 PyTorch 构建神

    2024年02月08日
    浏览(47)
  • 小白的机器学习之路(四)神经网络的初步认识:基于pytorch搭建自己的神经网络

    当前交通大数据业务的需要,需要承担一部分算法工作(数据处理) 目标四: 学习深度学习基础:了解神经网络的基本结构、反向传播算法和激活函数等。 目标任务:使用深度学习算法构建一个简单的神经网络模型,并训练模型。 学习计划小贴士: 每天定期复习前几天的

    2024年02月15日
    浏览(39)
  • Pytorch入门学习——快速搭建神经网络、优化器、梯度计算

    我的代码可以在我的Github找到 GIthub地址 https://github.com/QinghongShao-sqh/Pytorch_Study 因为最近有同学问我如何Nerf入门,这里就简单给出一些我的建议: (1)基本的pytorch,机器学习,深度学习知识,本文介绍的pytorch知识掌握也差不多. 机器学习、深度学习零基础的话B站​吴恩达、

    2024年02月14日
    浏览(42)
  • PyTorch深度学习实战(1)——神经网络与模型训练过程详解

    人工神经网络 ( Artificial Neural Network , ANN ) 是一种监督学习算法,其灵感来自人类大脑的运作方式。类似于人脑中神经元连接和激活的方式,神经网络接受输入,通过某些函数在网络中进行传递,导致某些后续神经元被激活,从而产生输出。函数越复杂,网络对于输入的数据拟

    2024年02月06日
    浏览(52)
  • 项目实战解析:基于深度学习搭建卷积神经网络模型算法,实现图像识别分类

    随着人工智能的不断发展,深度学习这门技术也越来越重要,很多人都开启了学习机器学习,本文将通过项目开发实例,带领大家从零开始设计实现一款基于深度学习的图像识别算法。 学习本章内容, 你需要掌握以下基础知识: Python 基础语法 计算机视觉库(OpenCV) 深度学习

    2024年02月03日
    浏览(66)
  • 【Pytorch】神经网络搭建

    在之前我们学习了如何用Pytorch去导入我们的数据和数据集,并且对数据进行预处理。接下来我们就需要学习如何利用Pytorch去构建我们的神经网络了。 目录 基本网络框架Module搭建 卷积层 从conv2d方法了解原理 从Conv2d方法了解使用 池化层 填充层 非线性层 线性层 Pytorch里面有一

    2023年04月17日
    浏览(38)
  • PyTorch 神经网络搭建模板

    在 PyTorch 中, Dataset 和 DataLoader 是用来处理数据的重要工具。它们的作用分别如下: Dataset : Dataset 用于存储数据样本及其对应的标签。在使用神经网络训练时,通常需要将原始数据集转换为 Dataset 对象,以便能够通过 DataLoader 进行批量读取数据,同时也可以方便地进行数据

    2023年04月08日
    浏览(39)
  • Python深度学习实战-基于class类搭建BP神经网络实现分类任务(附源码和实现效果)

    实现功能 上篇文章介绍了用Squential搭建BP神经网络,Squential可以搭建出上层输出就是下层输入的顺序神经网络结构,无法搭出一些带有跳连的非顺序网络结构,这个时候我们可以选择类class搭建封装神经网络结构。 第一步:import tensorflow as tf:导入模块 第二步:制定输入网络

    2024年02月08日
    浏览(62)
  • 搭建PyTorch神经网络进行气温预测

    数据表中 year,moth,day,week分别表示的具体的时间 temp_2:前天的最高温度值 temp_1:昨天的最高温度值 average:在历史中,每年这一天的平均最高温度值 actual:这就是我们的标签值了,当天的真实最高温度 friend:这一列可能是凑热闹的,你的朋友猜测的可能值,咱们不管它就好了

    2024年02月09日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包