机器学习-有监督学习-神经网络

这篇具有很好参考价值的文章主要介绍了机器学习-有监督学习-神经网络。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

线性模型

  • 向量版本
    y = ⟨ w , x ⟩ + b y = \langle w, x \rangle + b y=w,x+b

分类与回归

  • 懂得两者区别
  • 激活函数,损失函数

感知机模型

  • 感知机模型的本质是线性模型,再加上激活函数
  • 训练数据、损失函数、梯度下降,小批量梯度下降
  • 神经网络算法整体流程:
  1. 初始化网络
  2. 前向传播
  3. 计算损失
  4. 计算微分
  5. 梯度下降
  6. 反向传播
  7. 多轮迭代

激活函数

  • 给模型加入拟合非线性功能
  • 常见激活函数:
    • Sigmoid 0-1 二分类
    • Tanh -1-1
    • relu:公认的最好用的激活函数之一

维度诅咒

  • 神经网络可以很轻松的对隐藏层进行升降维
  • 升维后密度呈现指数形式逐渐下降,维度太大会过拟合

过拟合和欠拟合

  • 训练误差:模型在训练集上的误差
  • 泛化误差:模型在同样从原始样本的分布中抽取的无限多数据样本时模型误差的期望。现实世界不可能有无限多数据,所以只能将模型应用于独立的测试集来估计泛化误差。
  • 过拟合:训练误差小,泛化误差大。
  • 欠拟合:训练误差大,泛化误差大。
  • 解决过拟合:
    • 正则化:减少参数的大小
    • 数据增强:对原始数据做变化增加数据量
    • 降维:特征选择
    • 集成学习:多个模型集成在一起
    • 早停法:监控训练集和验证集的错误率
  • 解决欠拟合:
    • 添加新特征
    • 增加模型复杂度
    • 减少正则化系数

正则

  • 正则:约束模型复杂度来防止过拟合现象的一种手段。模型复杂度是由模型参数量大小和参数的可取值范围共同决定的。
  • 正则两个方向:约束模型参数量(dropout),约束模型取值范围(weight decay)
  • 利用均方范数作为硬性和软性限制
  • 衡量模型好坏可以看方差和偏差
\ 低方差 高方差
低偏差 预测准,且较集中 预测准,但较分散
高偏差 预测不准,且较集中 预测不准,且比较分散

机器学习-有监督学习-神经网络,深度学习,机器学习,学习,神经网络

  • L1正则化:使参数稀疏化
    损失函数 = 原始损失函数 + λ 2 m ∑ i = 1 n ∣ w i ∣ \text{损失函数} = \text{原始损失函数} + \frac{\lambda}{2m}\sum_{i=1}^{n} |w_i| 损失函数=原始损失函数+2mλi=1nwi

  • L2正则化:降低参数范围
    损失函数 = 原始损失函数 + λ 2 m ∑ i = 1 n w i 2 \text{损失函数} = \text{原始损失函数} + \frac{\lambda}{2m} \sum_{i=1}^{n} w_i^2 损失函数=原始损失函数+2mλi=1nwi2

  • Dropout 对神经网络的节点进行随机的失活,训练时失活,预测是全部节点

  • 集成学习是打比赛进行提点的一个很重要的方法

数据增强

  • 成功的机器学习应用不是拥有最好的算法,而是拥有最多的数据!
  • 当数据到达一定级数后,拥有相近的高准确度。

数值稳定性

  • 计算机视觉,模型很大,数据集要好几万、好几亿。模型不大,要需要上百。
  • 梯度消失
  • 梯度爆炸
  • 解决方法:数据归一化
    • Z-Score归一化
    • 最大最小归一化
      • 原因:提升模型精度和收敛速度

神经网络大家族

CNN

  • Image Search
  • Image Labeling
  • Image Segmantation
  • Object Detection
  • Object Tracking
  • OCR
  • Video Annotation
  • Recommendation
  • Image Classification
  • Robot perception
  • 以上分类不及1/10

RNN

  • 语法语义分析
  • 信息检索
  • 自动文摘
  • 文本数据挖掘
  • 自动问答
  • 机器翻译
  • 知识图谱
  • 情感分析
  • 文本相似度
  • 文本纠错
    原理:下一层的输入不仅和原始输入有关,还和之前的输出有关

GNN(图神经网络)

  • 芯片设计
  • 场景分析与问题推理
  • 推荐系统
  • 欺诈检测与风控相关
  • 知识图谱
  • 道路交通的流量预测
  • 自动驾驶(无人机等场景)
  • 化学,医疗等场景
  • 生物,制药等场景
  • 社交网络

原理:图节点,边和整体进行训练

GAN

  • 图像超分辨率
  • 艺术创作
  • 图像到图像的翻译(风格迁移)
  • 文本到图像的翻译
  • 图片编辑
  • 服装翻译
  • 照片表情符号
  • 图片融合
  • 图片修补

原理:生成器和判别器文章来源地址https://www.toymoban.com/news/detail-725369.html

到了这里,关于机器学习-有监督学习-神经网络的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习&&深度学习——卷积神经网络(LeNet)

    👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习深度学习——池化层 📚订阅专栏:机器学习深度学习 希望文章对你们有所帮助 之前的内容中曾经将softmax回归模型和多层感知机应用于Fashion-MNIST数据集中的服装图片。为了能应用他们,我

    2024年02月14日
    浏览(42)
  • 机器学习&&深度学习——循环神经网络RNN

    👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习深度学习—语言模型和数据集 📚订阅专栏:机器学习深度学习 希望文章对你们有所帮助 在之前介绍了n元语法模型,其中单词xt在时间步t的概率仅取决于前n-1个单词。对于时间步t-(n-1)之前

    2024年02月13日
    浏览(54)
  • 深度学习、机器学习和神经网络之间的区别

    深度学习是机器学习的一个子类别,有效地是一个三层神经网络。这些神经网络旨在通过模仿人脑的功能来“学习”大量数据,但它们远远达不到人脑的能力。尽管单层神经网络只能做出近似处理,但增加隐藏层可以帮助优化和提高准确性。 深度学习用于人工智能(AI)应用

    2024年02月20日
    浏览(37)
  • 深度学习2.神经网络、机器学习、人工智能

    目录 深度学习、神经网络、机器学习、人工智能的关系 大白话解释深度学习 传统机器学习 VS 深度学习 深度学习的优缺点 4种典型的深度学习算法 卷积神经网络 – CNN 循环神经网络 – RNN 生成对抗网络 – GANs 深度强化学习 – RL 总结 深度学习 深度学习、机器学习、人工智能

    2024年02月11日
    浏览(69)
  • 机器学习算法汇总:人工神经网络、深度学习及其它

    根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来

    2024年01月17日
    浏览(55)
  • 机器学习六—深度学习算法之人工神经网络(ANN)

    人工神经网络的灵感来自其生物学对应物。生物神经网络使大脑能够以复杂的方式处理大量信息。大脑的生物神经网络由大约1000亿个神经元组成,这是大脑的基本处理单元。神经元通过彼此之间巨大的连接(称为突触)来执行其功能。 人体神经元模型,下如图: 接收区 (

    2024年01月25日
    浏览(48)
  • 【AI】了解人工智能、机器学习、神经网络、深度学习

    一、深度学习、神经网络的原理是什么? 深度学习和神经网络都是基于对人脑神经系统的模拟。下面将分别解释深度学习和神经网络的原理。 深度学习的原理: 深度学习是一种特殊的机器学习,其模型结构更为复杂,通常包括很多隐藏层。它依赖于神经网络进行模型训练和

    2024年02月06日
    浏览(78)
  • 【深度学习】【机器学习】用神经网络进行入侵检测,NSL-KDD数据集,基于机器学习(深度学习)判断网络入侵,网络攻击,流量异常

    【深度学习】用神经网络进行入侵检测,NSL-KDD数据集,用网络连接特征判断是否是网络入侵。 NSL-KDD数据集,有dos,u2r,r21,probe等类型的攻击,和普通的正常的流量,即是有五个类别: 1、Normal:正常记录 2、DOS:拒绝服务攻击 3、PROBE:监视和其他探测活动 4、R2L:来自远程机器

    2024年04月25日
    浏览(46)
  • 竞赛项目 深度学习的口罩佩戴检测 - opencv 卷积神经网络 机器视觉 深度学习

    🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的口罩佩戴检测【全网最详细】 - opencv 卷积神经网络 机器视觉 深度学习 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 从2019年末开始,新型冠状

    2024年02月13日
    浏览(54)
  • 机器学习31:《推荐系统-IV》深度神经网络DNN

    在《 推荐系统(二)协同过滤 》一文中,笔者介绍了如何使用矩阵分解来学习嵌入。矩阵分解具有一些局限性: 基础矩阵分解只用了 UserID(QueryID) 和 ItemID 两个维度的信息,所有学到的知识都蕴含在 User 向量和 Item 嵌入中。可解释性差,同时,学习过程中很难融合更多有

    2024年02月16日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包