C语言网络编程基础(linux)

这篇具有很好参考价值的文章主要介绍了C语言网络编程基础(linux)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

文件描述符与套接字

在linux操作系统下,有万物皆文件的概念,当一个进程想要打开/创建一个文件时,内核会给进程返回一个文件描述符,文件描述符是一个非负数,常用int类型表示,起到索引的作用,是为了高效管理进程打开/创建的文件的,指向的是被打开的文件。所有I/O的系统操作也都是通过文件描述符来的;每一个进程都有一个文件描述符表,里面记录的就是进程打开/创建文件的记录

套接字是一种特殊的文件描述符,用于进程和进程之间的网络通信,常用在网络编程中

进程和进程之间通信主要有六种方式,分别是:
1.管道
2.消息队列
3.共享内存
4.信号
5.信号量
6.套接字.

套接字便是其中的一种.

网络编程的基本流程

C语言网络编程基础(linux),c语言,网络,linux
这个流程很经典,就不过多赘述了.

基础的函数和结构体(持续更新)

函数太多了,这里只记录一些常用的函数

socket函数

#include <sys/socket.h>

int socket(int domain, int type, int protocol);

其中
domain表示指定套接字的地址族或协议族。常见的值包括:

AF_INET:用于IPv4 地址族。
AF_INET6:用于IPv6 地址族。
AF_UNIX 或 AF_LOCAL:用于本地(Unix 域)套接字通信。

type表示指定套接字的类型,常见的值包括:

SOCK_STREAM:用于基于流的 TCP 套接字。
SOCK_DGRAM:用于基于数据报的 UDP 套接字。
SOCK_RAW:用于原始套接字,允许更底层的数据包处理。

protocol 参数通常为 0,表示选择默认的协议。在大多数情况下,操作系统会自动选择正确的协议,例如,对于 IPv4 TCP 套接字,它会选择 TCP 协议。

返回值:socket函数的返回值是一个文件描述符(fd),经常作为网络编程中其他函数的参数.

常见的使用方式

int sockfd = socket(AF_INET, SOCK_STREAM, 0);
    if (sockfd == -1) {
        perror("socket");
        exit(EXIT_FAILURE);
    }

sockaddr和sockaddr_in结构体

sockaddr

#include <sys/socket.h>
struct sockaddr {  
     sa_family_t sin_family;//地址族
    char sa_data[14]; //14字节,包含套接字中的目标地址和端口信息               
   }; 

sockaddr已经被sockaddr_in取代了,这里就不详细说了。

sockaddr_in

#include<netinet/in.h>或#include <arpa/inet.h>

struct sockaddr_in {
    short int sin_family;      // 地址族(Address Family),通常为 AF_INET
    unsigned short int sin_port;  // 端口号(Port Number)
    struct in_addr sin_addr;     // IPv4 地址(32 位的 IPv4 地址)
    unsigned char sin_zero[8];   // 不使用,填充字节
};

sockaddr_in 是用于表示 IPv4 地址的 C 语言结构体,通常在网络编程中与套接字套接字相关的函数一起使用

常见的使用方式:

struct sockaddr_in addr;
    memset(&addr, 0, sizeof(addr));
    addr.sin_family = AF_INET;//绑定地址族,使用ipv4
    addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK); // 127.0.0.1 //绑定地址
    addr.sin_port = htons(8000); //绑定端口

bind函数

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

1.sockfd参数表示要进行绑定的套接字文件描述符(是socket函数的返回值)

2.sockaddr 结构体是刚才上述所说的结构体,但是sockaddr不如sockaddr_in好用,所以一般情况下是定义一个sockaddr_in结构体,然后使用强制转换成sockaddr类型

3.addrlen参数表示结构体的长度

常用的使用方式:

 struct sockaddr_in server_addr;
    server_addr.sin_family = AF_INET;
    server_addr.sin_port = htons(8080);  // 端口号 8080
    server_addr.sin_addr.s_addr = INADDR_ANY;  // 任意地址
    memset(server_addr.sin_zero, 0, sizeof(server_addr.sin_zero));
    
if (bind(sockfd, (struct sockaddr *)&server_addr, sizeof(server_addr)) == -1) {
        perror("Bind failed");
        exit(1);
    }

listen函数

listen函数作用:让套接字变成可以被动连接的状态,等待客户端的连接

int listen(int sockfd, int backlog);

sockfd参数表示文件描述符

backlog参数表示等待连接队列的最大长度,即在调用 accept 函数之前可以排队等待的最大连接数。通常,这个值为一个正整数,决定了同时等待的连接数量。

常用的使用方法:

int backlog = 5; // 最大等待连接数
if (listen(sockfd, backlog) == -1) {
        perror("Listen failed");
        exit(1);
    }

accept函数

accept 函数用于接受传入的连接请求,通常在服务器端用于接受客户端的连接

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

1.sockfd是文件描述符
2.addr是 sockaddr结构体,用于接收客户端的地址,端口等信息,所以跟Bind函数调用时的sockaddr要区分开来

3.addrlen是结构体的大小

常见的使用方式:

 struct sockaddr_in new_addr;
 int new_sock;
 
 addr_size = sizeof(new_addr);
 new_sock = accept(sockfd, (struct sockaddr*)&new_addr, &addr_size);

返回值:在成功接受连接请求时返回一个新的套接字,该套接字用于与客户端进行通信。这个新套接字是已连接套接字,它是服务器与客户端之间的通信通道。

这里要重点强调一下,我们后续进行客户端和服务端之间的通信时,使用的是accept函数返回的新套接字,而之前用socket函数创建的旧套接字仍然在监听新的连接请求(用于接收连接请求,而不是直接用来通信)

recv函数

recv 函数用于从已连接套接字(或者数据报套接字)接收数据
注意是已连接的套接字

int recv(int sockfd, void *buf, size_t len, int flags);

1.sockfd是文件描述符
2.buf是接收数据的缓冲区指针
3.len是缓冲区的大小
4.flags通常设置为0

返回值是recv函数读到的字节数,如果返回值为 -1,表示读取失败,失败的原因会存储在errno里面
recv函数的返回值总结

常见的使用方式:

int bytes_read=recv(sockfd,buffer,sizeof(buffer),0);

recv函数是一个阻塞函数,如果在读取时,发现并没有数据可以读,就会被阻塞住,如果不想被阻塞住,可以用fcntl函数将文件描述符设置为非阻塞模式,具体操作请看fcntl函数.

recv 和 read 函数在某些方面类似,因为它们都用于从文件描述符中读取数据。然而,它们有一些区别:

来源:
recv 是套接字库函数,用于在网络编程中接收数据。它可以用于套接字(sockets)等网络通信相关的操作。
read 是标准C I/O 函数,通常用于文件描述符,但也可以用于套接字等。它更一般化,可用于读取任何可读的文件描述符。

参数:
recv 在最后一个参数中可以指定额外的选项(flags),允许对接收操作进行控制。
read 没有额外的选项参数,它只接受文件描述符、缓冲区和长度。

错误处理:
recv 返回的错误值可能包含更多关于套接字通信的信息,如连接已断开等。因此,错误代码可能更详细。
read 的错误码可能相对简单,不会提供关于底层通信的额外信息,但它可用于读取多种文件类型。

用法:
recv 主要用于网络编程,特别是在套接字通信中,用于接收数据。
read 主要用于文件和通用文件描述符的读取,可用于从文件、管道、套接字等读取数据。

writev函数

writev 函数用于将多个分散的数据写入文件描述符(通常是文件或套接字)
也被称为集中写,与write函数的最大区别就是writev函数可以一次性写出多个缓冲区,而write函数一次性只能写出一个缓冲区

#include <sys/uio.h>
ssize_t writev(int fd, const struct iovec *iov, int iovcnt);

1.fd参数表示文件描述符
2.iov参数表示指向iovec结构体数组的结构体指针
3.iovcnt表示数组中结构体的数量

iovec数组

struct iovec {
    void *iov_base;    // 缓冲区的起始地址
    size_t iov_len;    // 缓冲区的长度
};

常见的使用方式:

    iov[0].iov_base = buf1; //缓冲区的起始地址
    iov[0].iov_len = strlen(buf1);//缓冲区的长度!
    iov[1].iov_base = buf2;
    iov[1].iov_len = strlen(buf2);

    int fd = 1;  
    ssize_t bytes_written = writev(fd, iov, 2);//将这两个缓冲区的内容全部
    //                                           写入文件描述符

readv函数

用于把文件描述符中的数据一次性读到多个缓冲区中,也叫作分散读

ssize_t readv(int fd, const struct iovec *iov, int iovcnt);

使用方法和writev类似

iov[0].iov_base= buf1;
iov[0].iov_len=sizeof(buf1);
iov[1].iov_base = buf2;
iov[1].iov_len = sizeof(buf2);
ssize_t bytes_read = readv(fd,iov,2);

connect函数

connect 函数用于建立一个客户端套接字与服务端套接字之间的连接。它在客户端套接字上调用,指示客户端要连接到指定的服务器地址和端口。

int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

1.sockfd表示客户端文件描述符
2.sockaddr表示要连接的地址及端口等信息(服务端的IP地址和监听的端口)
3.addrlen表示结构体的大小

常见使用方式:

int sockfd = socket(AF_INET, SOCK_STREAM, 0);
    if (sockfd == -1) {
        perror("socket");
        exit(1);
    }

    // 准备服务器地址信息
    struct sockaddr_in server_addr;
    server_addr.sin_family = AF_INET;
    server_addr.sin_port = htons(8080);  // 服务器端口
    server_addr.sin_addr.s_addr = inet_addr("127.0.0.1");  // 服务器IP地址

    // 连接到服务器
    if (connect(sockfd, (struct sockaddr *)&server_addr, sizeof(server_addr)) == -1) {
        perror("connect");
        exit(1);
    }

fcntl函数

fcntl 函数是一个在 Unix 和类 Unix 操作系统中使用的函数,主要用于控制文件描述符(file descriptor)的属性和执行各种操作。这包括修改文件状态标志、获取或设置文件描述符的属性、以及执行非阻塞操作等。具体来说,fcntl 函数的一些常见用途包括:

1.修改文件状态标志:通过 fcntl 函数,你可以修改文件描述符的状态标志,例如将文件设置为非阻塞模式,以便在读写操作时不会被阻塞。这是通过设置 O_NONBLOCK 标志实现的。

2.获取或设置文件描述符属性:你可以使用 fcntl 函数获取或设置文件描述符的各种属性,如获取或设置文件的访问模式、文件的拥有者、或文件的屏蔽字(file mode creation mask)等。

3.复制文件描述符:你可以使用 F_DUPFD 命令来复制一个文件描述符,这会创建一个新的文件描述符,指向与原始文件描述符相同的文件。

4.获取或设置文件锁:fcntl 函数还可用于获取或设置文件锁,以确保多个进程可以安全地访问共享文件。你可以使用 F_GETLK 命令来获取文件锁信息,或使用 F_SETLK 和 F_SETLKW 命令来设置或阻塞文件锁。

5.取消文件锁:通过 F_SETLK 命令,你还可以用来取消现有的文件锁。

参考链接:fcntl

#include <fcntl.h>

int fcntl(int fd, int cmd, ... /* arg */);

1.fd是要操作的文件描述符
2.cmd是对应的操作命令,如下:

F_DUPFD:创建一个新的文件描述符,指向与原始文件描述符相同的文件。

F_GETFD:获取文件描述符的标志。

F_SETFD:设置文件描述符的标志。

F_GETFL:获取文件的状态标志(如 O_RDONLY、O_WRONLY、O_NONBLOCK 等)。

F_SETFL:设置文件的状态标志。

F_GETOWN:获取文件描述符的所有权(如进程 ID 或进程组 ID)。

F_SETOWN:设置文件描述符的所有权。

F_GETLK:获取文件锁的信息。

F_SETLK:设置文件锁,如果锁已存在则返回错误。

F_SETLKW:设置文件锁,如果锁已存在则等待。

使用例子:

//对文件描述符设置非阻塞
int setnonblocking(int fd)
{
    int old_option = fcntl(fd, F_GETFL);
    int new_option = old_option | O_NONBLOCK;// O_NONBOLOCK为非阻塞标志.
    fcntl(fd, F_SETFL, new_option);
    return old_option;
}

因为文件描述符的标志是一个位掩码,所以必须要先获取原来的状态,再跟新状态或运算,才可以修改文件描述符的状态.

stat函数

 #include <sys/types.h>
 #include <sys/stat.h>
 #include <unistd.h>
 
 //获取文件属性,存储在statbuf中
 int stat(const char *pathname, struct stat *statbuf);

1.参数pathname表示一个完整的文件路径
2.参数statbuf是一个stat的结构体指针,用来在调用stat函数之后,将文件的信息存储在这个结构体中

struct stat 
 {
   mode_t    st_mode;        /* 文件类型和权限 */
   off_t     st_size;        /* 文件大小,字节数*/
};

用stat函数可以获取文件的类型,权限,以及大小等信息,常用于判断文件是否存在,可读,或者是不是目录等

常见的使用方式:

查看路径是否有文件存在:

 if(stat(m_real_file,&m_file_stat)<0) 
 //文件不存在

查看文件是否有可读权限

if(!(m_file_stat.st_mode&S_IROTH)) 
//不可读

查看该路径是不是目录

if(S_ISDIR(m_file_stat.st_mode))
//是目录

mmap函数

用于将一个文件或其他对象映射到内存,提高文件的访问速度。

void* mmap(void* start,size_t length,int prot,int flags,int fd,off_t offset);
int munmap(void* start,size_t length);

start:映射区的开始地址,设置为0时表示由系统决定映射区的起始地址

length:映射区的长度

prot:期望的内存保护标志,不能与文件的打开模式冲突

PROT_READ 表示页内容可以被读取

flags:指定映射对象的类型,映射选项和映射页是否可以共享

MAP_PRIVATE 建立一个写入时拷贝的私有映射,内存区域的写入不会影响到原文件

fd:有效的文件描述符,一般是由open()函数返回

off_toffset:被映射对象内容的起点

常见的使用方式:

 int fd=open(m_real_file,O_RDONLY);
    m_file_address=(char*)mmap(0,m_file_stat.st_size,PROT_READ,MAP_PRIVATE,fd,0);

epoll相关函数

epoll是linux操作系统,内核提供给用户态专门用于多路复用的系统调用函数,其作用是可以让一个进程维护多个socket.

epoll的流程
1.使用epoll_create函数创建一个指向内核事件表的文件描述符

2.使用epoll_ctl函数将想要监听的socket和想要监听的事件类型注册到epoll上

3.使用epoll_wait函数等待事件到达,进程/线程通过对应的事件处理方式处理事件

epoll_create

#include <sys/epoll.h>
int epoll_create(int size)

作用:创建一个指向epoll内核事件表的文件描述符,返回值用于epoll其他函数的第一个参数

epoll_ctl函数

#include <sys/epoll.h>
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event)

用于将文件描述符注册到epoll上,或者对已经注册好的文件描述符修改和删除

1.第一个参数是epoll_create函数的句柄
2.第二个参数是一个命令,分别用三个宏表示注册,修改,删除

EPOLL_CTL_ADD (注册新的fd到epfd),
EPOLL_CTL_MOD (修改已经注册的fd的监听事件),
EPOLL_CTL_DEL (从epfd删除一个fd);

3.event参数表示要监听的事件

epoll_event结构体

struct epoll_event {
__uint32_t events; //表示事件的类型
epoll_data_t data; //
};

events对应的事件类型有如下几种:
EPOLLIN:表示对应的文件描述符可以读(包括对端SOCKET正常关闭)

EPOLLOUT:表示对应的文件描述符可以写

EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来)

EPOLLERR:表示对应的文件描述符发生错误

EPOLLHUP:表示对应的文件描述符被挂断;

EPOLLET:将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)而言的

EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里


epoll_data_t是一个共用体(联合体)表示用户数据,用来存储额外的信息

typedef union epoll_data {
    void *ptr;
    int fd;
    uint32_t u32;
    uint64_t u64;
} epoll_data_t;

ptr:一个指向 void 类型的指针,通常用于关联一个任意类型的指针。
fd:一个整数,通常用于关联一个文件描述符(比如套接字描述符)。
u32:一个32位的无符号整数。
u64:一个64位的无符号整数。

epoll_ctl常见的使用方式:(这里如果看不太懂events下面还有详解)

注册:

     epoll_event event;
     event.data.fd = fd;//设置文件描述符!
 #ifdef ET
     event.events = EPOLLIN | EPOLLET | EPOLLRDHUP;
 8#endif
 
#ifdef LT
    event.events = EPOLLIN | EPOLLRDHUP;
#endif

    if (one_shot)
        event.events |= EPOLLONESHOT;
    epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &event);
    setnonblocking(fd);

删除:

epoll_ctl(epollfd, EPOLL_CTL_DEL, fd, 0);
   close(fd);

修改

void modfd(int epollfd, int fd, int ev)
 {
     epoll_event event;
     event.data.fd = fd;
 
 #ifdef ET
     event.events = ev | EPOLLET | EPOLLONESHOT | EPOLLRDHUP;
 #endif
 
#ifdef LT
    event.events = ev | EPOLLONESHOT | EPOLLRDHUP;
#endif

    epoll_ctl(epollfd, EPOLL_CTL_MOD, fd, &event);
}

epoll_wait函数

用于等待事件的发生,当监控的文件描述符上有事件发生时,返回有事件发生的文件描述符的个数,通知进程处理事件

#include <sys/epoll.h>
int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);

1.epfd是epoll_wait函数创建的句柄
2.events表示内核得到的事件的集合
3.maxevents表示events的大小,即能够处理的最大事件数
4.timeout表示超时时间:
-1:阻塞
0:非阻塞
大于0:指定毫秒数

常见的使用方式:

int epfd = epoll_create(1); // 创建 epoll 实例
struct epoll_event events[MaxEvents]; // 用于存储事件的数组

// 将需要监听的文件描述符添加到 epoll 实例(epfd)中,使用 epoll_ctl 函数。

int num_events = epoll_wait(epfd, events, MaxEvents, timeout);

epoll_ctl函数和epoll_wait函数中的events详解:

epoll_ctl 函数:
events 参数用于指定你希望监听的事件,这个参数是用于告诉 epoll 实例需要监听哪些事件的。在调用 epoll_ctl 函数时,你需要为 events 参数赋值,指定感兴趣的事件类型,如 EPOLLIN(可读事件)或 EPOLLOUT(可写事件)等。
events 参数通常是一个位掩码,可以使用位运算来指定多个事件,例如 EPOLLIN | EPOLLOUT 表示同时监听可读和可写事件。
events 参数的角色是告诉 epoll 实例你关心的事件类型以及要监听的文件描述符。

epoll_wait 函数:
events 参数用于接收 epoll_wait 函数返回的已发生事件的信息。在调用 epoll_wait 之前,你不需要为 events 参数赋值,因为它将由 epoll_wait 函数填充。
当 epoll_wait 函数返回时,它会将已发生的事件信息填充到 events 数组中。你可以检查每个事件的类型和相关的文件描述符,以确定发生了什么事件。

pthread相关函数

pthread_create

#include <pthread.h>
int pthread_create (pthread_t *thread_tid,                 //返回新生成的线程的id
                    const pthread_attr_t *attr,         //指向线程属性的指针,通常设置为NULL
                    void * (*start_routine) (void *),   //处理线程函数的地址
                    void *arg);                         //start_routine()中的参数

pthread_create是C语言中,用于创建线程的函数
其中
thread_tid 是一个指向pthread_t类型的指针,用于存储新创建线程的标识符(pthread_t类型也被成为线程标识符)

attr 是一个指向pthread_attr_t类型的指针,用于指定线程的属性,通常为NULL

start_routine是一个指向返回类型为void * ,参数类型为(void *)的一个函数指针,该函数是线程要执行的函数,通常把线程的入口函数放在这里

arg 是一个 void类型的指针,作为start_routine函数中的参数,在新线程启动时,会作为参数传递给start_routine函数

当调用pthread_create函数之后,会在操作系统中创建一个新的线程,新的线程会直接去执行start_routine指向的入口函数.新线程可以和主线程同时执行.各自执行不同的代码路径

返回值为0表示线程创建成功,否则表示线程创建失败.

pthread_join

int pthread_join(pthread_t thread, void **retval);

thread表示要等待的线程标识符
retval 是一个指向指针的指针,用于接受等待线程的返回值

主线程在调用pthread_join函数之后,会被阻塞,直到被等待的线程结束,同时,retval指向的指针将获得等待线程的返回值(退出状态).,如果不关心等待线程的返回值,可以将retval参数设置为NULL.

该函数主要用于线程间的同步操作,以确保主线程在等待子线程运行结束之后再继续执行
返回值为0表示函数使用成功,否则失败

pthread_detach

#include <pthread.h>
int pthread_detach(pthread_t thread);

pthread_detach是C语言中用于 线程分离的函数
其中 thread 是 pthread_t类型的标识符,用于指定被分离的线程
线程分离指的是让该线程与其主线程分离
在线程与其主线程分离之后,主线程就不再等待该线程的结束,不需要主线程调用pthread_join函数来等待该线程的终止并且该线程在结束时也会自动释放资源,相当于是让该线程与主线程脱离联系.

当线程终止后,会释放一些资源:
1.线程的栈空间释放:现成的栈空间用来存放局部变量,函数调用等,线程终止后会自动释放这些资源,供其他线程使用
2.线程描述符的释放:线程描述符是内核为线程分配的数据结构,用来跟踪线程的状态、优先级等信息。当一个线程终止时,其线程描述符会被释放,以允许新的线程创建并使用该描述符。

线程分离的意义是
主线程不需要在结束时显示的等待子线程的结束,只要使用了线程分离,那么子线程会自行结束也会自行释放资源,如果一个主线程不关心子线程的返回值和子线程的结束场景,我们就可以使用线程分离来提高代码的简洁性

pthread_exit

void pthread_exit(void *retval);

当线程执行完毕时,可以通过pthread_exit函数来终止自身
其中retval 是指向需要传递给等待线程的退出状态的指针.

参数retval 可以被传递给等待该线程的其他线程的pthread_join函数,作为该线程的退出状态

通俗来讲,就是你可以在线程结束之前,动态开辟创建一个指针,用它来存储和返回线程的退出状态,该线程在终止时,就会返回这个退出状态,相当于是线程的返回值;当我们在其他的线程中使用pthread_join函数等待这个线程结束时,这个线程的退出状态就会保存在pthread_join的第二个参数里,相当于是线程退出状态的一个传递.

int *result = malloc(sizeof(int));
    *result = 42;
    pthread_exit((void *)result);

调用pthread_exit函数会立刻终止当前正在执行的线程,并且将控制权交还给主线程,如果被终止的线程是主线程,则会终止整个程序,如果不关心线程的退出状态,retval设置为NULL

pthread_exit(NULL); //不关心线程的退出状态

最常见的用法是线程在执行完任务后调用 pthread_exit 来退出。若线程没有调用 pthread_exit,则当线程函数返回时,线程将自动调用 pthread_exit 并将返回值设为 NULL。同时允许传递退出状态给等待线程的函数,

pthread_join和pthread_exit连用的案例:

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void *thread_function(void *arg) {
    // 获取整数参数值
    int *value = (int *)arg;

    printf("Thread %d is running!\n", *value);

    // 模拟线程执行任务...
    // ...

    // 分配并返回退出状态
    int *result = malloc(sizeof(int));
    *result = 42;
    pthread_exit((void *)result);
}

int main() {
    pthread_t thread;
    int thread_arg = 1;
    void *thread_result;

    // 创建线程
    if (pthread_create(&thread, NULL, thread_function, (void *)&thread_arg) != 0) {
        fprintf(stderr, "Failed to create thread\n");
        return 1;
    }

    // 等待线程结束并获取退出状态
    if (pthread_join(thread, &thread_result) != 0) {
        fprintf(stderr, "Failed to join thread\n");
        return 1;
    }

    printf("Thread exited with result: %d\n", *(int *)thread_result);

    // 释放退出状态的内存
    free(thread_result);

    return 0;
}

MYSQL相关函数

MYSQL相关函数

信号量,互斥锁,条件变量相关函数

信号量,互斥锁,条件变量相关函数文章来源地址https://www.toymoban.com/news/detail-725636.html

到了这里,关于C语言网络编程基础(linux)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Linux网络编程 网络基础知识

    目录 1.网络的历史和协议的分成 2.网络互联促成了TCP/IP协议的产生 3.网络的体系结构 4.TCP/IP协议族体系 5.网络各层的协议解释 6.网络的封包和拆包 7.网络预备知识      Internet-\\\"冷战\\\"的产物 1957年十月和十一月,前苏联先后欧两颗”Spuinik”卫星上天 1958年美国总统艾森豪威尔向

    2024年02月10日
    浏览(48)
  • 【网络编程】Linux网络编程基础与实战第三弹——网络名词术语

    数据包从源地址到目的地址所经过的路径,由一系列路由节点组成。 某个路由节点为数据包选择投递方向的选路过程。 路由器工作原理 路由器是连接因特网中各局域网、广域网的设备,它会根据信道的情况自动选择和设定路由,以最佳路径,按前后顺序发送信号的设备。

    2024年02月08日
    浏览(45)
  • 【Linux网络编程一】网络基础1(网络框架)

    本篇开始总结网络知识,系统部分到此结束。 网络的本质就是在获取和生产数据,而系统的本质就是在处理数据。从网络中获取到数据利用系统调用来处理数据。而网络的本质也就是文件,我往文件里写,就是往网卡里写,往网卡里写,就是往网络里写。 我们在生活中都是

    2024年02月19日
    浏览(39)
  • C++Linux网络编程基础

    当动态库和静态库同时存在的时候,会优先使用动态库 。 静态库 1. 制作静态库 -c表示只编译,-o则是说明需要指定文件名 2. 使用静态库 3. 库文件的概念 程序在编译时,会将库文件的二进制代码链接到目标程序中,这种方式称为 静态编译 。 如果多个程序中用到了同一个静

    2024年01月20日
    浏览(53)
  • 【Linux】网络基础+UDP网络套接字编程

    只做自己喜欢做的事情,不被社会和时代裹挟着前进,是一件很奢侈的事。 1. 首先计算机是人类设计出来提高生产力的工具,而人类的文明绵延至今一定离不开人类之间互相的协作,既然人类需要协作以完成更为复杂的工作和难题,所以计算机作为人类的工具自然也一定需要

    2024年02月08日
    浏览(63)
  • 《3.linux应用编程和网络编程-第8部分-3.8.网络基础》 3.8.1.网络通信概述 3.8.3.网络通信基础知识2

        进程间通信: 管道 、 信号量、 共享内存, 技术多,操作麻烦     线程就是解决 进程间 通信 麻烦的事情,这是线程的 优势 3.8.1.网络通信概述 3.8.1.1、从进程间通信说起: 网络域套接字socket , 网络通信其实就是位于网络中不同主机上面                   的 

    2024年02月15日
    浏览(56)
  • Linux高性能服务器编程 学习笔记 第五章 Linux网络编程基础API

    我们将从以下3方面讨论Linux网络API: 1.socket地址API。socket最开始的含义是一个IP地址和端口对(ip,port),它唯一表示了使用TCP通信的一端,本书称其为socket地址。 2.socket基础API。socket的主要API都定义在sys/socket.h头文件中,包括创建socket、命名socket、监听socket、接受连接、发

    2024年02月07日
    浏览(55)
  • 初学记录【linux应用】 TCP/UDP 网络编程 C语言

    以下内容分别为TCP 与 UDP编程,内容有相似或者重合部分,可根据流程 相互对照学习,都已经附上源码 。 **1.** socket 创建 tcp套接字 (监听的套接字) 2、IPv4套接字地址结构 #include netinet/in.h struct in_addr: 如果使用 Internet 所以 sin_family 一般为 AF_INET。 ⚫ sin_addr 设置为 INADDR_AN

    2024年02月03日
    浏览(64)
  • 多人聊天室(带私聊功能)Linux网络编程基础

    在和同学一起努力下终于完成了期末作业哈哈哈哈 文章目录 目录 前言 一、需求分析 二、功能设计 1.服务器端: 2.客户端: 三、流程图: 编程流程图: 服务器流程图: 客户端流程图: 四、运行效果: 项目源码: 服务器源码 客户端源码: 总结: Linux网络编程是我们这学

    2024年02月09日
    浏览(57)
  • Linux C++ 网络编程基础(2) : TCP多线程一个server对应多个client

    作者:令狐掌门 技术交流QQ群:675120140 csdn博客:https://mingshiqiang.blog.csdn.net/   tcp编程时, 一个server可以对应多个client, server端用多线程可以实现. linux下多线程可以使用POSIX的线程函数, 下面给出服务端和客户端的代码.   Linux POSIX线程库提供了一组函数来创建、管理和同步

    2024年02月13日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包